
Elektron Message API C++ 
Edition
V3.2.x
RDM USAGE GUIDE
C++ EDITION
Document Version: 3.2
Date of issue: 27 April 2018
Document ID: EMAC320UMRDM.180



Legal Information
© Thomson Reuters 2015 - 2018. All rights reserved.

Thomson Reuters, by publishing this document, does not guarantee that any information contained herein is and will remain accurate or that 
use of the information will ensure correct and faultless operation of the relevant service or equipment. Thomson Reuters, its agents and 
employees, shall not be held liable to or through any user for any loss or damage whatsoever resulting from reliance on the information 
contained herein.

This document contains information proprietary to Thomson Reuters and may not be reproduced, disclosed, or used in whole or part without 
the express written permission of Thomson Reuters.

Any Software, including but not limited to, the code, screen, structure, sequence, and organization thereof, and Documentation are protected 
by national copyright laws and international treaty provisions. This manual is subject to U.S. and other national export regulations.

Nothing in this document is intended, nor does it, alter the legal obligations, responsibilities or relationship between yourself and Thomson 
Reuters as set out in the contract existing between us.
Elektron Message API C++ Edition 3.2 – RDM Usage Guide ii
EMAC320UMRDM.180



Contents

Contents
Chapter 1  Introduction ......................................................................................................................  1
1.1  About this Manual ...........................................................................................................................................  1
1.2  Audience .........................................................................................................................................................  1
1.3  Open Message Model (OMM).........................................................................................................................  1
1.4  Reuters Wire Format (RWF) ...........................................................................................................................  1
1.5  References......................................................................................................................................................  2
1.6  Documentation Feedback ...............................................................................................................................  2
1.7  Conventions ....................................................................................................................................................  2

1.7.1  Typographic ..............................................................................................................................................  2
1.7.2  General Transport API Syntax..................................................................................................................  3
1.7.3  Definitions and Standard Behaviors .........................................................................................................  3

1.8  Acronyms and Abbreviations ..........................................................................................................................  4

Chapter 2  Domain Model Overview..................................................................................................  5
2.1  What is a Domain Message Model? ...............................................................................................................  5
2.2  Reuters Domain Models (RDMs) Vs User-Defined Models ............................................................................  5

2.2.1  Reuters Domain Models (RDMs)..............................................................................................................  5
2.2.2  User-Defined Domain Model ....................................................................................................................  6
2.2.3  Domain Message Model Creation ............................................................................................................  6

2.3  Message Concepts .........................................................................................................................................  7
2.4  OMM Consumer / OMM Interactive Provider Initial Interaction.......................................................................  8
2.5  Sending and Receiving Content......................................................................................................................  9
2.6  General Elektron Message API Concepts.....................................................................................................  10

2.6.1  Snapshot and Streaming Requests ........................................................................................................  10
2.6.2  Reissue Requests and Pause/Resume ..................................................................................................  10
2.6.3  Clearing the Cache on Refreshes...........................................................................................................  11
2.6.4  Dynamic View .........................................................................................................................................  11
2.6.5  Batch Request ........................................................................................................................................  11
2.6.6  Posting....................................................................................................................................................  11

Chapter 3  Login Domain .................................................................................................................  12
3.1  Description ....................................................................................................................................................  12
3.2  Usage............................................................................................................................................................  13

3.2.1  Login Request Message .........................................................................................................................  13
3.2.2  Login Request Elements.........................................................................................................................  15
3.2.3  Login Request Domain Representation..................................................................................................  17
3.2.4  Login Refresh Message..........................................................................................................................  18
3.2.5  Login Refresh Elements .........................................................................................................................  20
3.2.6  Login Refresh Domain Representation...................................................................................................  25
3.2.7  Login Status Message ............................................................................................................................  26
3.2.8  Login Status Elements............................................................................................................................  27
3.2.9  Login Status Domain Representation .....................................................................................................  27
3.2.10  Login Update Message...........................................................................................................................  27
3.2.11  Login Close Message .............................................................................................................................  28
3.2.12  Login Generic Message Use ..................................................................................................................  28
3.2.13  Login Post Message ...............................................................................................................................  29
3.2.14  Login Ack Message ................................................................................................................................  29

3.3  Data...............................................................................................................................................................  30
3.3.1  Login Refresh Message Payload............................................................................................................  30
3.3.2  Login Generic Message Payload............................................................................................................  32

3.4  Special Semantics.........................................................................................................................................  33
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 1
EMAC320UMRDM.180



    
3.4.1  Login Direction........................................................................................................................................  33
3.4.2  Initial Login..............................................................................................................................................  33
3.4.3  Multiple Logins........................................................................................................................................  33
3.4.4  Group and Service Status.......................................................................................................................  33
3.4.5  Single Open and Allow Suspect Data Behavior......................................................................................  34

3.5  Specific Usage: RDF Direct Login.................................................................................................................  35
3.6  Specific Usage: Enterprise Platform .............................................................................................................  35
3.7  Specific Usage: Login Credentials Update Feature ......................................................................................  35

Chapter 4  Source Directory Domain ..............................................................................................  36
4.1  Description ....................................................................................................................................................  36
4.2  Usage............................................................................................................................................................  37

4.2.1  Source Directory Request Message .......................................................................................................  37
4.2.2  Source Directory Refresh Message........................................................................................................  39
4.2.3  Source Directory Update Message.........................................................................................................  40
4.2.4  Source Directory Status Message ..........................................................................................................  41
4.2.5  Source Directory Generic Message........................................................................................................  42

4.3  Data...............................................................................................................................................................  43
4.3.1  Source Directory Refresh and Update Payload......................................................................................  43
4.3.2  Source Directory ConsumerStatus Generic Message Payload ..............................................................  51

4.4  Special Semantics.........................................................................................................................................  52
4.4.1  Multiple Streams .....................................................................................................................................  52
4.4.2  Service IDs .............................................................................................................................................  52
4.4.3  ServiceState and AcceptingRequests ....................................................................................................  52
4.4.4  Service and Group Status Values...........................................................................................................  53
4.4.5  Removing a Service................................................................................................................................  53
4.4.6  Automatic Request from EMA Consumer...............................................................................................  54
4.4.7  Client Requests Non-Existing Service Directory.....................................................................................  54

Chapter 5  Dictionary Domain .........................................................................................................  55
5.1  Description ....................................................................................................................................................  55
5.2  Decoding Field List Contents with Field and Enumerated Types Dictionaries..............................................  56
5.3  Usage............................................................................................................................................................  57

5.3.1  Dictionary Request Message..................................................................................................................  57
5.3.2  Dictionary Refresh Message...................................................................................................................  59
5.3.3  Dictionary Status Message .....................................................................................................................  61

5.4  Data...............................................................................................................................................................  62
5.4.1  Filter........................................................................................................................................................  62
5.4.2  Refresh Message Summary Data...........................................................................................................  63
5.4.3  Response Message Payload ..................................................................................................................  63
5.4.4  DictionaryId.............................................................................................................................................  64

5.5  Field Dictionary .............................................................................................................................................  65
5.5.1  Field Dictionary Payload .........................................................................................................................  65
5.5.2  Field Dictionary File Format....................................................................................................................  67
5.5.3  Specific Usage: RDF Direct and FieldDefinition Dictionary ....................................................................  71

5.6  Enumerated Types Dictionary.......................................................................................................................  72
5.6.1  Enumerated Types Dictionary Payload ..................................................................................................  72
5.6.2  Enumerated Types Dictionary File Format .............................................................................................  74
5.6.3  Specific Usage: RDF Direct and EnumTable Dictionary.........................................................................  76

5.7  Special Semantics.........................................................................................................................................  77
5.7.1  DictionariesProvided and DictionariesUsed............................................................................................  77
5.7.2  Version Information.................................................................................................................................  77

5.8  Other Dictionary Types .................................................................................................................................  78
5.9  Specific Usage: Enterprise Platform .............................................................................................................  78
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 2
EMAC320UMRDM.180



    
Chapter 6  Market Price Domain......................................................................................................  79
6.1  Description ....................................................................................................................................................  79
6.2  Usage............................................................................................................................................................  79

6.2.1  Market Price Request Message..............................................................................................................  79
6.2.2  Market Price Refresh Message ..............................................................................................................  81
6.2.3  Market Price Update Message ...............................................................................................................  83
6.2.4  Market Price Status Message.................................................................................................................  85
6.2.5  Market Price Post Message....................................................................................................................  86

6.3  Data: Response Message Payload...............................................................................................................  87
6.4  Special Semantics.........................................................................................................................................  88

6.4.1  Snapshots...............................................................................................................................................  88
6.4.2  Ripple Fields ...........................................................................................................................................  88

6.5  Specific Usage: RDF Direct MarketPrice ......................................................................................................  88
6.6  Specific Usage: Legacy Records ..................................................................................................................  88

Chapter 7  Market By Order Domain ...............................................................................................  89
7.1  Description ....................................................................................................................................................  89
7.2  Usage............................................................................................................................................................  89

7.2.1  Market By Order Request Message .......................................................................................................  89
7.2.2  Market By Order Refresh Message ........................................................................................................  91
7.2.3  Market By Order Update Message .........................................................................................................  93
7.2.4  Market By Order Status Message...........................................................................................................  95
7.2.5  Market By Order Post Message..............................................................................................................  96

7.3  Data...............................................................................................................................................................  97
7.3.1  Response Message Payload ..................................................................................................................  97
7.3.2  Summary Data........................................................................................................................................  98
7.3.3  MapEntry Contents .................................................................................................................................  98

7.4  Special Semantics.........................................................................................................................................  98
7.5  Specific Usage: RDF Direct and Response Message Payload.....................................................................  98
7.6  Specific Usage: Enterprise Platform .............................................................................................................  99

Chapter 8  Market By Price Domain ..............................................................................................  100
8.1  Description ..................................................................................................................................................  100
8.2  Usage..........................................................................................................................................................  100

8.2.1  Market By Price Request Message ......................................................................................................  100
8.2.2  Market By Price Refresh Message .......................................................................................................  101
8.2.3  Market By Price Update Message ........................................................................................................  103
8.2.4  Market By Price Status Message..........................................................................................................  104
8.2.5  Market By Price Post Message.............................................................................................................  105

8.3  Data.............................................................................................................................................................  106
8.3.1  Response Message Payload ................................................................................................................  106
8.3.2  Summary Data......................................................................................................................................  106
8.3.3  MapEntry.Key Contents........................................................................................................................  107

8.4  Special Semantics.......................................................................................................................................  107
8.5  Specific Usage: RDF Direct and the Response Message Payload.............................................................  108
8.6  Specific Usage: Enterprise Platform ...........................................................................................................  108

Chapter 9  Market Maker Domain ..................................................................................................  109
9.1  Description ..................................................................................................................................................  109
9.2  Usage..........................................................................................................................................................  109

9.2.1  Market Maker Request Message..........................................................................................................  109
9.2.2  Market Maker Refresh Message...........................................................................................................  111
9.2.3  Market Maker Update Message............................................................................................................  113
9.2.4  Market Maker Status Message .............................................................................................................  114
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 3
EMAC320UMRDM.180



    
9.2.5  Market Maker Post Message ................................................................................................................  115
9.3  Data.............................................................................................................................................................  116

9.3.1  Response Message Payload ................................................................................................................  116
9.3.2  Summary Data......................................................................................................................................  116
9.3.3  MapEntry Contents ...............................................................................................................................  117

9.4  Special Semantics.......................................................................................................................................  117
9.5  Specific Usage: RDF Direct and the Response Message Payload.............................................................  117
9.6  Specific Usage: Enterprise Platform ...........................................................................................................  118

Chapter 10  Yield Curve Domain .....................................................................................................  119
10.1  Description ..................................................................................................................................................  119
10.2  Usage..........................................................................................................................................................  119

10.2.1  Yield Curve Request Message .............................................................................................................  119
10.2.2  Yield Curve Refresh Message ..............................................................................................................  121
10.2.3  Yield Curve Update Message ...............................................................................................................  122
10.2.4  Yield Curve Status Message ................................................................................................................  123
10.2.5  Yield Curve Domain Post Message ......................................................................................................  124

10.3  Data.............................................................................................................................................................  125
10.3.1  Response Message Payload ................................................................................................................  125
10.3.2  Summary Data......................................................................................................................................  126
10.3.3  Yield Curve Input and Output Entries ...................................................................................................  126

10.4  Special Semantics.......................................................................................................................................  126
10.5  Specific Usage: ATS ...................................................................................................................................  127

Chapter 11  Symbol List Domain.....................................................................................................  128
11.1  Description ..................................................................................................................................................  128
11.2  Usage..........................................................................................................................................................  128

11.2.1  Symbol List Request Message .............................................................................................................  128
11.2.2  Symbol List Refresh Message ..............................................................................................................  130
11.2.3  Symbol List Update Message ...............................................................................................................  132
11.2.4  Symbol List Status Message ................................................................................................................  134

11.3  Data: Response Message Payload.............................................................................................................  135
11.4  Special Semantics.......................................................................................................................................  135
11.5  Specific Usage ............................................................................................................................................  136

Appendix A ReqMsg Payload ...........................................................................................................  137
A.1 View Definition .............................................................................................................................................  137
A.2 ItemList.........................................................................................................................................................  137
A.3 Symbol List Behaviors..................................................................................................................................  138
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 4
EMAC320UMRDM.180



Elektron Message API 3.2 C++ Edition – RDM Usage Guide 1
EMAC320UMRDM.180

List of Figures

Contents

Figure 1.  OMM Consumer and Interactive Provider Initial Interactions..........................................................................  8
Figure 2.  General Domain Use.......................................................................................................................................  9
Figure 3.  Login Request Domain Representation Code Usage Example ....................................................................  17
Figure 4.  Login Refresh Domain Representation Code Usage Example .....................................................................  25
Figure 5.  Login Status Domain Representation Code Usage Example .......................................................................  27
Figure 6.  Login Refresh Message Payload ..................................................................................................................  30
Figure 7.  Login Generic Message Payload ..................................................................................................................  32
Figure 8.  Source Directory Refresh and Update Message Payload.............................................................................  43
Figure 9.  Source Directory Generic Message Payload ................................................................................................  51
Figure 10.  FieldList Referencing Field Dictionary ....................................................................................................  56
Figure 11.  FieldEntry Referencing an Enumerated Types Table..............................................................................  56
Figure 12.  Field Dictionary Payload ...............................................................................................................................  65
Figure 13.  Field Dictionary File Format Sample .............................................................................................................  67
Figure 14.  Field Dictionary Tagged Attributes Sample...................................................................................................  67
Figure 15.  Enumerated Types Dictionary Refresh Message Payload............................................................................  72
Figure 16.  MarketPrice Response Message Payload ....................................................................................................  87
Figure 17.  MarketByOrder Response Message Payload ...............................................................................................  97
Figure 18.  MarketByPrice Response Message Payload ..............................................................................................  106
Figure 19.  MarketMaker Response Message Payload ................................................................................................  116
Figure 20.  Yield Curve Payload Example.....................................................................................................................  125
Figure 21.  SymbolList Response Message Payload....................................................................................................  135
Figure 22.  SymbolList Request Message Payload Specifying Symbol List Behavior ..................................................  138



List of Tables

Contents
Table 1:  Acronyms and Abbreviations ..........................................................................................................................  4
Table 2:  Reuters Domain Model Overview ...................................................................................................................  5
Table 3:  Message Concepts .........................................................................................................................................  7
Table 4:  Configure Login Request Message...............................................................................................................  13
Table 5:  Login Request Message ...............................................................................................................................  13
Table 6:  Login Request Attrib Elements .................................................................................................................  15
Table 7:  Login Refresh Message ................................................................................................................................  18
Table 8:  Login Refresh Attrib Elements..................................................................................................................  20
Table 9:  Login Status Message Member Use .............................................................................................................  26
Table 10:  Login Status Attrib Elements ....................................................................................................................  27
Table 11:  Login Close Message Member Use ..............................................................................................................  28
Table 12:  Login Generic Message Member Use...........................................................................................................  28
Table 13:  Vector.SummaryData’s ElementList Contents .........................................................................................  31
Table 14:  ElementList Contents ....................................................................................................................................  31
Table 15:  MapEntry Elements.....................................................................................................................................  32
Table 16:  SingleOpen and AllowSuspectData Handling ...............................................................................................  34
Table 17:  Source Directory Request Message .............................................................................................................  37
Table 18:  Source Directory Refresh Message ..............................................................................................................  39
Table 19:  Source Directory Update Message ...............................................................................................................  40
Table 20:  Source Directory Status Message.................................................................................................................  41
Table 21:  Source Directory Generic Message ..............................................................................................................  42
Table 22:  Source Directory Map Contents.....................................................................................................................  43
Table 23:  Source Directory MapEntry Filter Entries....................................................................................................  44
Table 24:  Source Directory Info Filter Entry Elements ..................................................................................................  45
Table 25:  Source Directory State FilterEntry Elements .........................................................................................  47
Table 26:  Source Directory Group FilterEntry Elements........................................................................................  48
Table 27:  Source Directory Load FilterEntry Elements..........................................................................................  49
Table 28:  Source Directory Data FilterEntry Elements ..........................................................................................  49
Table 29:  Source Directory Link FilterEntry Map Contents....................................................................................  50
Table 30:  Source Directory Generic Message MapEntry Elements............................................................................  51
Table 31:  ServiceState and AcceptingRequests...........................................................................................................  52
Table 32:  Dictionary Request Message ........................................................................................................................  57
Table 33:  Dictionary Request Message ........................................................................................................................  59
Table 34:  Dictionary Status Message ...........................................................................................................................  61
Table 35:  Dictionary's Filter ............................................................  62
Table 36:  Dictionary summaryData.........................................................  63
Table 37:  Field Dictionary Element Entries ...................................................................................................................  66
Table 38:  Field Dictionary File Tag Information ............................................................................................................  68
Table 39:  Field Dictionary File Column Names and ElementEntry Names ..............................................................  68
Table 40:  Field Dictionary Type Keywords....................................................................................................................  69
Table 41:  Marketfeed to RWF Mappings in RDMFieldDictionary..................................................................................  70
Table 42:  Marketfeed to RWF Mappings in RDMFieldDictionary..................................................................................  71
Table 43:  Element Entries Describing Each Enumerated Type Table ..........................................................................  73
Table 44:  Enumerated Type Dictionary File Tag Information........................................................................................  75
Table 45:  RWF EnumType Dictionary File Format Reference Fields ...........................................................................  76
Table 46:  RWF EnumType Dictionary File Values........................................................................................................  76
Table 47:  Other Dictionary Types .................................................................................................................................  78
Table 48:  Market Price Request Message ....................................................................................................................  79
Table 49:  Market Price Refresh Message.....................................................................................................................  81
Table 50:  Market Price Update Message......................................................................................................................  83
Table 51:  Market Price Update Message......................................................................................................................  85
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 1
EMAC320UMRDM.180



    
Table 52:  Market By Order Request Message..............................................................................................................  89
Table 53:  Market By Order Refresh Message...............................................................................................................  91
Table 54:  Market By Order Update Message................................................................................................................  93
Table 55:  Market By Order Status Message .................................................................................................................  95
Table 56:  Market By Price Request Message.............................................................................................................  100
Table 57:  Market By Price Refresh Message..............................................................................................................  101
Table 58:  Market By Price Update Message...............................................................................................................  103
Table 59:  Market By Price Status Message ................................................................................................................  104
Table 60:  Market Maker Request Message ................................................................................................................  109
Table 61:  Market Maker Refresh Message .................................................................................................................  111
Table 62:  Market Maker Update Message ..................................................................................................................  113
Table 63:  Market Maker Status Message ...................................................................................................................  114
Table 64:  Yield Curve Request Message....................................................................................................................  119
Table 65:  Yield Curve Refresh Message ....................................................................................................................  121
Table 66:  Yield Curve Update Message .....................................................................................................................  122
Table 67:  Yield Curve Status Message.......................................................................................................................  123
Table 68:  Yield Curve Inputs and Outputs ..................................................................................................................  126
Table 69:  Symbol List Request Message....................................................................................................................  128
Table 70:  Symbol List Refresh Message ....................................................................................................................  130
Table 71:  Symbol List Update Message .....................................................................................................................  132
Table 72:  Symbol List Status Message.......................................................................................................................  134
Table 73:  View Definition in Payload...........................................................................................................................  137
Table 74:  ItemList in Payload......................................................................................................................................  137
Table 75:  Request Message Payload for Symbol List Domain Specifying Symbol List Behaviors.............................  138
Table 76:  :SymbolListBehaviors ElementEntry Contents...................................................................................  139
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 2
EMAC320UMRDM.180



Chapter 1    Introduction
Chapter 1 Introduction

1.1 About this Manual

This manual describes how the Reuters Domain Models (RDM) are defined in terms of the Open Message Model (OMM). 
Data conforming to RDM is available via Thomson Reuters Enterprise Platform (TREP), EleKtron, and Reuters Data Feed 
Direct (RDFD) using the Elektron Message API.

1.2 Audience

This guide is written for software developers who are familiar with the Elektron Message API and want to develop Elektron 
Message API-based applications to access RDM-formatted data. Before reading this manual:

• Users should be familiar with OMM concepts and types.

• It may be useful to read the Message API C++ Edition Developers Guide and be familiar with the example applications 
provided in the Elektron Message API package.

1.3 Open Message Model (OMM)

The OMM is a collection of message header and data constructs. Some OMM message header constructs, such as the 
Update message, have implicit market logic associated with them while others, such as the Generic message, allow for free-
flowing bi-directional messaging. OMM data constructs can be combined in various ways to model data that ranges from 
simple (or flat) primitive types to complex multiple-level hierarchal data.

The layout and interpretation of any specific OMM model, also referred to as a domain model, is described within that model’s 
definition and is not coupled with the API. The OMM is the flexible tool that simply provides the building blocks to design and 
produce domain models to meet the needs of the system and its users. The Elektron Message API provides structural 
representations of the OMM constructs and manages the RWF binary-encoded representation of the OMM. Elektron Message 
API users can leverage the provided OMM constructs to consume or provide OMM data throughout their TREP.

1.4 Reuters Wire Format (RWF)

Reuters Wire Format (RWF) is the encoded representation of OMM. RWF is a highly-optimized, binary format designed to 
reduce the cost of data distribution as compared to previous wire formats. Binary encoding represents data in the machine’s 
native manner, enabling further use in calculations or data manipulations. RWF allows for serializing OMM message and data 
constructs in an efficient manner while still allowing rich content types. RWF can distribute field identifier-value pair data, self-
describing data, as well as more complex, nested hierarchal content.
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 1
EMAC320UMRDM.180



Chapter 1    Introduction
1.5 References

For additional Elektron Message API documentation, refer to:

• The Message API C++ Edition Developers Guide

• The Message API C++ Edition Reference Guide

• The Thomson Reuters Professional Developer Community

1.6 Documentation Feedback

While we make every effort to ensure the documentation is accurate and up-to-date, if you notice any errors, or would like to 
see more details on a particular topic, you have the following options:

• Send us your comments via email at apidocumentation@thomsonreuters.com.

• Mark up the PDF using the Comment feature in Adobe Reader. After adding your comments, you can submit the entire 
PDF to Thomson Reuters by clicking Send File in the File menu. Use the apidocumentation@thomsonreuters.com 
address.

1.7 Conventions

1.7.1 Typographic

The Elektron Message API uses the following typographical conventions:

• The Reuters Domain Models (RDMs) are described in terms of OMM concepts. Images and XML example layouts are 
provided as a reference in relevant sections.

• In-line MISSING VARIABLE: structures, functions, and types are shown in orange, Lucida Console font.

• Parameters, filenames, and directories are shown in Bold font.

• Document titles and variable values are shown in italics.

• When included in the body of the text, new concepts are called out in Bold, Italics the first time they are mentioned.

• Verbose code examples (one or more lines of code) are shown in Lucida Console font against an orange background. 
Comments in such code samples are formatted in green coloring. For example:
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 2
EMAC320UMRDM.180

https://developers.thomsonreuters.com/
mailto:apidocumentation@thomsonreuters.com
mailto:apidocumentation@thomsonreuters.com


Chapter 1    Introduction
1.7.2 General Transport API Syntax

The Elektron Message API uses the following general API syntax conventions:

• Dot-separated notation indicates data available within a hierarchy. Each period can indicate a MISSING VARIABLE: 
structure, a data memberName, an entry, or an element name.

• streamId values are assigned by the application and used across all domain models. Consumer applications assign 
positive streamId values when requesting content and interactive provider applications respond using the same 
streamId. Non-interactive provider applications assign negative streamId values.

• Payload generically refers to the message payload. 

• Integer constants are defined in all capital letters with underscores (e.g., MMT_MARKET_PRICE, 
SERVICE_INFO_ID). In the Elektron Message API, they can be found in the thomsonreuters.ema.rdm namespace 
and in the Access/Include/EmaRdm.h file.

• The names of Elektron Message API FilterId values (e.g. SERVICE_INFO_ID) correspond to the flag value 
enumeration defined for use with the message key’s filter (e.g., SERVICE_INFO_FILTER). Names may be 
shortened for clarity (e.g., DirectoryInfo).

• The names of the data members correspond to the method names for both get/set in the EMA interface, with the get 
prefixes removed and the first character always upper case.

1.7.3 Definitions and Standard Behaviors

This Elektron Message API manual uses the following terms and the API illustrates the following default behavior:

• Not Used means the attribute is not extensible; the Elektron Message API may pass-on the information, however 
there is no guarantee that the data will be passed through the network now or in the future. Use of a “Not Used” 
attribute may cause problems when interacting with some components.

• Required means the data must be provided or set.

• Conditional means date might be required depending on a particular scenario or context. Refer to the description for 
specific details.

• Recommended means the data is not strictly required, but should be provided or set by all applications.

• Optional means the data may be provided or set, but is not required. This data should be handled and understood by 
all applications, even if not including it. When present, this information should be passed through the network.

• Extensible means the numeric ranges may have more values defined in the future. It means additional Elements can 
be added to Element Lists.

• If data is not present, the Elektron Message API assumes the default value.

• Generic message use is not supported within existing, defined Reuters Domain Models, except when explicitly 
defined.

• Posting is assumed to be supported within currently-defined Reuters Domain Models, except when otherwise 
indicated. Posting is not supported on Source Directory and Dictionary domains. Posting within the Login domain must 
follow off-stream posting rules and target a domain other than Login. Posting on any other allowed domains must 
follow on-stream posting rules and target that specific domain. For further details about posting, refer to the Message 
API C++ Edition Developers Guide.
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 3
EMAC320UMRDM.180



Chapter 1    Introduction
1.8 Acronyms and Abbreviations

ACRONYM DEFINITION

ADH Advanced Data Hub

ADS Advanced Distribution Server

API Application Programming Interface

ASCII American Standard Code for Information Interchange

ATS Advanced Transformation Server

DACS Data Access Control System

DMM Domain Message Model

EED Elektron Edge Device

EMA Elektron Message API

ETA Elektron Transport API

OMM Open Message Model

QoS Quality of Service

RDM Reuters Domain Model

RMTES Reuters Multi-Lingual Text Encoding Standard

RSSL Reuters Source Sink Library

RWF Reuters Wire Format

TRDFD Thomson Reuters Datafeed Direct

TREP Thomson Reuters Enterprise Platform

TS1 Time Series One

Table 1: Acronyms and Abbreviations  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 4
EMAC320UMRDM.180



Chapter 2    Domain Model Overview
Chapter 2 Domain Model Overview

2.1 What is a Domain Message Model?

A Domain Message Model (DMM) describes a specific arrangement of OMM message and data constructs. A domain 
message model will define any specialized behaviors associated with the domain or any specific meaning or semantics 
associated with data contained in the message. Unless a domain model specifies otherwise, any implicit market logic 
associated with a message still applies (e.g. an Update message indicates that any previously-received data also contained in 
the Update message is being modified).

2.2 Reuters Domain Models (RDMs) Vs User-Defined Models

2.2.1 Reuters Domain Models (RDMs)

An RDM is a domain message model typically provided or consumed by a Thomson Reuters product, such as the TREP, Data 
Feed Direct, or Elektron. Some currently-defined RDMs allow for authenticating to a provider (e.g. Login), exchanging field or 
enumeration dictionaries (e.g. Dictionary), and providing or consuming various types of market data (e.g. Market Price, Market 
by Order, Market by Price). Thomson Reuters’s defined models have a domain value of less than 128.

The following table provides a high-level overview of the currently-available RDMs. The following chapters provide more 
detailed descriptions for each of these.

DOMAIN PURPOSE

Login Authenticates users and advertise/request features that are not specific to a particular domain. 

Use of and support for this domain is required for all OMM applications. 

This is considered an administrative domain, content is required and expected by many 
Thomson Reuters components and conformance to the domain model definition is expected. 

For further details refer to Chapter 3, Login Domain.

Source Directory Advertises information about available services and their state, QoS, and capabilities. This 
domain also conveys any group status and group merge information.

Interactive and Non-Interactive OMM provider applications require support for this domain. 
Thomson Reuters strongly recommends that OMM Consumers request this domain.

This is considered an administrative domain, and many Thomson Reuters components expect 
and require content to conform to the domain model definition.

For further details, refer to  Chapter 4, Source Directory Domain.

Dictionary Provides dictionaries that may be needed when decoding data. Though use of the Dictionary 
domain is optional, Thomson Reuters recommends that provider applications support the 
domain’s use.

Considered an administrative domain, content is required and expected by many Thomson 
Reuters components and following the domain model definition is expected.

For further details refer to Chapter 5, Dictionary Domain.

Table 2: Reuters Domain Model Overview  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 5
EMAC320UMRDM.180



Chapter 2    Domain Model Overview
2.2.2 User-Defined Domain Model

A User Defined Domain Model is a domain message model defined by a party other than Thomson Reuters. These may be 
defined to solve a specific user or system need in a particular deployment which is not resolvable through the use of an RDM. 
Any user-defined model must use a domain value between 128 and 255. If needed, domain model designers can work with 
Thomson Reuters to define their models as standard RDMs. This allows for the most seamless interoperability with future 
RDM definitions and with other Thomson Reuters products.

2.2.3 Domain Message Model Creation

This document discusses defined RDMs capable of flowing through the Elektron Message API. Elektron Message API users 
can leverage OMM to create their own Domain Message Models (DMMs) in addition to those described in this document. 
When defining a DMM, consider the following questions / points:

• Is a new DMM really needed, or can you express the data in terms of an existing RDM?

• The DMM should be well-defined. Following the design templates used in this document is a good approach. The 
structure, properties, use cases, and limitations of the DMM should be specified.

Market Price Provides access to Level I market information such as trades, indicative quotes and top of 
book quotes. Content includes information such as volume, bid, ask, net change, last price, 
high, and low. 

For further details refer to Chapter 6, Market Price Domain.

Market By Order Provides access to Level II full order books. Contains a list of orders (keyed by the order IDs) 
with related information such as price, whether it is a bid/ask order, size, quote time, and 
market maker identifier.

For further details refer to Chapter 7, Market By Order Domain.

Market By Price Provides access to Level II market depth information. Contains a list of price points (keyed by 
that price and the bid/ask side) with related information.

For further details refer to Chapter 8, Market By Price Domain.

Market Maker Provides access to market maker quotes and trade information. Contains a list of market 
makers (keyed by that market maker’s ID) with related information such as that market maker’s 
bid and asking prices, quote time, and market source.

For further details refer to Chapter 9, Market Maker Domain.

Yield Curve Provides access to yield curve information. This can contain input information used to calculate 
a yield curve along with output information (which is the curve itself). A yield curve shows the 
relation between the interest rate and the term associated with the debt of a borrower. The 
curve’s shape can help to give an idea of future economic activity and interest rates.

For further details refer to Chapter 10, Yield Curve Domain.

Symbol List Provides access to a set of symbol names, typically from an index, service, or cache. Minimally 
contains symbol names and can optionally contain additional cross-reference information such 
as permission information, name type, or other venue-specific content. 

For further details refer to Chapter 11, Symbol List Domain.

DOMAIN PURPOSE

Table 2: Reuters Domain Model Overview (Continued)
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 6
EMAC320UMRDM.180



Chapter 2    Domain Model Overview
• While OMM provides building blocks that can structure data in many ways, the semantics of said data must abide by the 
rules of OMM. For example, custom DMMs should follow the request, refresh, status, and update semantics implicitly 
defined by those messages. If more flexible messaging is desired within a custom DMM, it can be accomplished through 
the use of a generic message, which allows for more free-form bidirectional messaging after a stream is established.

• DomainType values less than 128 are reserved for RDMs. The DomainType of a custom DMM must be between 128 and 
255.

• You might want to work with Thomson Reuters to define a published RDM, rather than use a custom DMM. This ensures 
the most seamless interoperability with future RDMs and other Thomson Reuters products.

2.3 Message Concepts

The following table describes the mapping of OMM concepts with actual interfaces. For clarity and consistency, the Message 
concept will be referenced throughout the rest of this RDM Usage Guide.

MESSAGE CONCEPT DESCRIPTION/VALUE

Request Message ReqMsg whose data type is DataType.ReqMsgEnum

Close Message

(Request)

OmmConsumer.unregister()

Refresh Message 

(Response)

RefreshMsg whose data type is DataType.RefreshMsgEnum

Update Message

(Response)

UpdateMsg whose data type is DataType.UpdateMsgEnum

Status message

(Response)

StatusMsg whose data type is DataType.StatusMsgEnum

Post Message PostMsg whose data type is DataType.PostMsgEnum

Generic Message GenericMsg whose data type is DataType.GenericMsgEnum

Ack Message AckMsg whose data type is DataType.AckMsgEnum

Table 3: Message Concepts  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 7
EMAC320UMRDM.180



Chapter 2    Domain Model Overview
2.4 OMM Consumer / OMM Interactive Provider Initial Interaction

An OMM consumer application can establish connections to other OMM interactive provider applications, including TREP, 
Data Feed Direct, and Elektron. This interaction first requires an exchange of login messages between the consumer and 
provider, where the provider can either accept or reject the consumer. If the consumer is allowed to log in, it may then request 

the list of services available from the provider. Optionally1, the consumer can request any dictionaries it needs to decode data 
from the provider. After this process successfully completes, the consumer application can begin requesting from non-
administrative domains, which provide other content (e.g. Market Price, Market By Order).

Figure 1.  OMM Consumer and Interactive Provider Initial Interactions

1. Instead of downloading any needed dictionaries, the application can load them from a local file.
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 8
EMAC320UMRDM.180



Chapter 2    Domain Model Overview
2.5 Sending and Receiving Content

Use of non-administrative domains generally follows a specific sequence:

• The consumer sends an ReqMsg containing the name of an item it is interested in.

• The provider first responds with an RefreshMsg to bring the consumer up to date with all currently available information.

• As data changes, the provider sends UpdateMsg (if the consumer requested streaming information).

• When the consumer is no longer interested, it sends an CloseMsg to close the stream (or, if the provider needs to close the 
stream, it uses an StatusMsg).

Figure 2.  General Domain Use
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 9
EMAC320UMRDM.180



Chapter 2    Domain Model Overview
2.6 General Elektron Message API Concepts

Many domains share a set of common behaviors for handling data. If a specific behavior is not supported on a domain, this 
should be specified in that domains detailed description. This section briefly defines these concepts; the Message API C++ 
Edition Developers Guide describes them in greater detail.

2.6.1 Snapshot and Streaming Requests

Many domains generally support issuing a request message with or without setting the ReqMsg.InterestAfterRefresh flag. 
When the flag is set, the request is known as a “streaming” request, meaning that the refresh will be followed by updates.

When a snapshot request is made, the refresh should have a StreamState of StreamState::NonStreamingEnum. When the 
final part of the refresh is received, the stream is considered closed (the final refresh is indicated by the 
RefreshMsg.Complete flag on the RefreshMsg). The consumer should be prepared to receive status messages or update 
messages between the first and final parts of the refresh (if the domain supplies only single part refresh messages, like Market 
Price, no updates would be delivered on the stream).

2.6.2 Reissue Requests and Pause/Resume

A consumer application can request a new refresh and change certain parameters on an already requested stream. To do so, 
the application sends a subsequent ReqMsg on the same stream. This is known as a reissue.

A reissue changes the priority of a stream and pauses or resumes data flow.

• To pause streaming data, the application can send a reissue with the ReqMsg.Pause flag. Issuing a pause on the 
Login stream is interpreted as a Pause All request, resulting in all streams being paused.

• To resume data flow on the stream, the application can send a subsequent reissue with the 
ReqMsg.InterestAfterRefresh flag. Issuing a resume on the Login stream is interpreted as a Resume All.

Pause and Resume is provided as a best effort, and data may continue streaming even after a pause has been issued.

For further details on reissue requests, changeable parameters, and Pause and Resume functionality, refer to the Message 
API C++ Edition Developers Guide.
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 10
EMAC320UMRDM.180



Chapter 2    Domain Model Overview
2.6.3 Clearing the Cache on Refreshes

If you perform a refresh, you might need to clear the cache. To clear the cache, call RefreshMsg.ClearCache with a value of 
true. For further details on using the clear cache flag, refer to the Message API C++ Edition Reference Guide.

When clearing a cache, you must observe the following conditions:

• Pass true value on all solicited level 1 data refreshes.

• Pass true value only in the first part of solicited level 2 data refreshes.

• Calling this function on unsolicited refreshes depends on the application and its intent:

- If set to true on an unsolicited refresh, the cache is cleared and populated with new data.

- If not set to true on the unsolicited refresh, new data is overlaid onto the existing data. In this case, the resulting 
image / refresh is a superset of fields currently contained in cache combined with the set brought by the current 
refresh.

2.6.4 Dynamic View

A dynamic view allows a consumer application to specify a subset of data content in which it is interested. A providing 
application can choose to supply only this requested subset of content across all response messages. This filtering results in 
reduced data flow across the connection. View use can be leveraged across all non-administrative domain model types, where 
specific usage and support should be indicated in the model definition. The provider indicates its support for view requesting 
via the SupportViewRequests Login attribute, as described in Section 3.3.1. For more information on dynamic views, refer to 
the Message API C++ Edition Developers Guide.

2.6.5 Batch Request

A batch request allows a consumer application to indicate interest in multiple like-item streams with a single ReqMsg. A 
providing application should respond by providing a status on the batch request stream itself and with new individual item 
streams for each item requested in the batch. Batch requesting can be leveraged across all non-administrative domain model 
types. The provider indicates its support for batch requests via the SupportBatchRequests Login attribute, as described in 
Section 3.3.1. For more information on batch requests, refer to the Message API C++ Edition Developers Guide.

2.6.6 Posting

Posting offers an easy way for an OMM consumer application to publish content to upstream components which can then 
provide the information. This can be done off-stream using the Login domain or on-stream using any other non-administrative 
domain. Use PostMsg to post content to the system. A PostMsg can contain any OMM container type as its payload (but this is 
often a Msg). A provider indicates support for posting via the SupportOMMPost Login attribute, as described in Section 3.3.1. 
For more information on posting, refer to the Message API C++ Edition Developers Guide.

RefreshMsg().clearCache(true);

Note: Currently, ADS supports view-only on Market Price Level 1 data. As a result, this causes the Elektron Message API to 
provide view on Market Price Level 1.
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 11
EMAC320UMRDM.180



Chapter 3    Login Domain
Chapter 3 Login Domain

3.1 Description

The Login domain registers a user with the system, after which the user can request1 or post2 RDM content. A Login request 
can also be used to authenticate a user with the system.

• A consumer application must log into the system before it can request or post content.

• A non-interactive provider application must log into the system before providing any content.

For further details:

• Section 3.2 details the use of each message within the Login domain.

• Section 3.3 presents the message payloads.

• Section 3.4 includes a brief summary of login handling and authentication.

• Section 3.5 - Section 3.7 cover specific use case scenarios.

1. Consumer applications can request content after logging into the system.
2. Consumer applications can post content, which is similar to contribution or unmanaged publication, after logging into the system.
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 12
EMAC320UMRDM.180



Chapter 3    Login Domain
3.2 Usage

3.2.1 Login Request Message

A Login request message is encoded and sent by OMM consumer and OMM non-interactive provider applications internally in 
the constructor of this class. This message registers a user with the system. After receiving a successful login response, 
applications can then begin consuming or providing additional content. An OMM interactive provider can use the Login request 
information to authenticate users with DACS.

You can configure a login request message using the following methods.

An initial Login request must be streaming (i.e., a ReqMsg.InterestAfterRefresh flag set to true is required). After the initial 
Login stream is established, subsequent Login requests using the same login handle can be sent to obtain additional refresh 
messages, pause the stream, or resume the stream. If a login stream is paused, this is interpreted as a ‘Pause All’ request 
which indicates that all item streams associated with the user should be paused. A login stream is paused by specifying 
ReqMsg.Pause to true. To resume data flow on all item streams (also known as a Resume All), users need to call 
ReqMsg.InterestAfterRefresh with true value. For more information, refer to the Message API C++ Edition Developers 
Guide.

METHOD NAME DESCRIPTION

OmmConsumerConfig.username() Required.

Specifies the user name for login request message.

OmmConsumerConfig.password() Optional

Specifies the password for login request message.

OmmConsumerConfig.position() Optional

Specifies the position for login request message.

OmmConsumerConfig.applicationId() Optional

Specifies the authorization application identifier for login request message.

OmmConsumerConfig.addAdminMsg() Optional

Specifies a login request message to override the default login request.

Table 4: Configure Login Request Message  

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_LOGIN = 1

Interactions Conditional.

• Setting InitialImage to true indicates that an initial image is required.

• Setting InterestAfterRefresh to true indicates that a streaming request is required. A 
streaming request is required before any other requests. Non-streaming requests are 
unsupported.

• Setting Pause set to true indicates that a pause is required. A pause request is a request to 
pause all item streams associated with the login. To resume all item streams associated 
with the login, issue another streaming request.

QoS Not used.

worstQos Not used.

Table 5: Login Request Message  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 13
EMAC320UMRDM.180



Chapter 3    Login Domain
extendedHeader Not used.

ServiceId Not used.

NameType Optional. Possible values are:

• USER_NAME 

• USER_EMAIL_ADDRESS 

• USER_TOKEN 

• USER_COOKIE

• USER_AUTHN_TOKEN

If NameType is not set, it is assumed to be USER_NAME.

A type of USER_NAME typically corresponds to a DACS user name. This can be used to 
authenticate and permission a user.USER_TOKEN is specified when using the AAA API The 
user token is retrieved from a AAA API gateway and then passed through the system via the 
Name. To validate users, a provider can pass this user token to an authentication manager 
application.

If you specify USER_AUTHN_TOKEN, you must also set Name to a single, null character (i.e., 
a 0x00 binary), and include an AuthenticationToken element in the Attrib. For details on 
the AuthenticationToken, refer to Section 3.2.2.

Both USER_TOKEN and USER_AUTHN_TOKEN can periodically change: when it changes, 
an application can send a login reissue to pass information upstream.

• For further details on using USER_TOKEN, refer to the AAA API documentation.

• For further details on using USER_AUTHN_TOKEN, refer to the TREP Authentication User 
Manual.a

Name Required. Name should be populated with appropriate content corresponding to the NameType 
specification.

Filter Not used.

Identifier Not used.

Attrib Optional. Typically an ElementList. Attributes are specified in Section 3.2.2.

Payload Not used.

a. For further details on TREP Authentication, refer to the TREP Authentication User Manual, accessible on Thomson Reuters MyAccount in the DACS 
product documentation set.

COMPONENT DESCRIPTION / VALUE

Table 5: Login Request Message (Continued)
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 14
EMAC320UMRDM.180

https://my.thomsonreuters.com/products


Chapter 3    Login Domain
3.2.2 Login Request Elements

You can use the Login Attrib elements to send additional authentication information and user preferences between 
components. The ReqMsg.Attrib ReqMsg.Attrib is an ElementList. The predefined elements available on a Login Request 
are shown in the following table.

ELEMENT NAME
DATA TYPE 
ENUMERATION

RANGE/
EXAMPLE

DESCRIPTION

AllowSuspectData UInt 0 | 1 • 1: Indicates that the consumer application 
allows a OmmState.Suspect state. 1 is the 
default setting.

• 0: Indicates that the consumer application 
prefers any suspect data result in the stream 
being closed with an 
OmmState.ClosedRecover state.

For more information, refer to Section 3.4.5.

ApplicationAuthorizationToken ASCII Sequence of single 
byte characters 
from the base36 
character set ([0-
9][A-Z])

Indicates that application behaviors was 
inspected and approved by Thomson Reuters.

For more information on obtaining an application 
authorization token, contact your Thomson 
Reuters representative.

ApplicationId ASCII 1 - 65535

e.g., 256

The DACS application ID. If the server 
authenticates with DACS, the consumer 
application might need to pass in a valid 
ApplicationId. This must be unique for each 
application. IDs from 1 to 256 are reserved for 
permanent market data applications. These are 
assigned by Thomson Reuters and will be uniform 
across all client systems. IDs from 257 to 65535 
are available for site-specific use.

ApplicationName ASCII Name of 
application e.g., 
Elektron Message 
API

Identifies the application sending the Login 
request or response message. When present, the 
application name in the Login request identifies 
the OMM consumer, and the application name in 
the Login response identifies the OMM provider.

AuthenticationExtended Buffer Any binary buffer This is a binary buffer whose content will be 
passed to the token authenticator as an additional 
means for verifying a user’s identity.

AuthenticationToken ASCII Any ASCII String, 
e.g., HOLDER

Conditional. AuthenticationToken is a 
client-generated token that identifies the user 
when operating in an environment that uses 
TREP Authenticationa. On login reissue 
messages, this field contains a new token 
intended to replace the previous one about to 
expire.

If your TREP system has TREP Authentication 
enabled, AuthenticationToken is included in 
the message.

The default setting is: "" (an empty string)

DisableDataConversion N/A N/A Reserved by TR.

Table 6: Login Request Attrib Elements  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 15
EMAC320UMRDM.180



Chapter 3    Login Domain
DownloadConnectionConfig UInt 0 | 1 Specifies whether to download the configuration:

• 1: Indicates the user wants to download 
connection configuration information.

• 0 (or if absent): Indicates that no connection 
configuration information is desired. 0 is the 
default setting.

InstanceId ASCII Any ASCII String, 
e.g., Instance1

InstanceId is used to differentiate applications 
that run on the same machine. However, because 
InstanceId is set by the user logging into the 
system, it does not guarantee uniqueness across 
different applications on the same machine.

Password ASCII my_password Sets the password for logging into the system. 
This information may be required and encrypted 
in the future.

Position ASCII ip addr/hostname 

ip addr/net 

e.g., 192.168.1.1/
net

DACS position. If the server is authenticating with 
DACS, the consumer application might need to 
pass in a valid position.

ProvidePermissionExpressions UInt 0 | 1 If specified on the Login Request, this indicates a 
consumer wants permission expression 
information to be sent with responses. Permission 
expressions allow for items to be proxy 
permissioned by a consumer via content-based 
entitlements.

ProvidePermissionExpressions defaults to 
1.

ProvidePermissionProfile UInt 0 | 1 When specified on a Login Request, indicates 
that a consumer desires the permission profile. 
An application can use the permission profile to 
perform proxy permissioning.

ProvidePermissionProfile defaults to 1.

Role UInt LOGIN_ROLE_CO
NS = 0,

LOGIN_ROLE_PR
OV = 1

Indicates the role of the application logging onto 
the system.

• An OMM consumer application should specify 
its role as LOGIN_ROLE_CONS.

• An OMM non-interactive provider application 
should specify its role as 
LOGIN_ROLE_PROV.

• EMA defaults the role element with a value of 
1. 

OMM consumer applications typically connect to 
a different port number than non-interactive 
provider applications. Role information allows 
TREP to detect and inform users of incorrect port 
use.

Role defaults to 0.

ELEMENT NAME
DATA TYPE 
ENUMERATION

RANGE/
EXAMPLE

DESCRIPTION

Table 6: Login Request Attrib Elements (Continued)
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 16
EMAC320UMRDM.180



Chapter 3    Login Domain
3.2.3 Login Request Domain Representation

The Domain Representation of the Login Request Message is an easy-to-use object which can set up and return an encoded 
OMM Login Request Message without extensive effort. You can find this object in EMA’s Login package.

Figure 3.  Login Request Domain Representation Code Usage Example

SingleOpen UInt 0 | 1 • 1: Indicates the consumer application wants 
the provider to drive stream recovery.

• 0: Indicates that the consumer application will 
drive stream recovery.

For more information, refer to Section 3.4.5.

SingleOpen defaults to 1.

SupportProviderDictionaryDownload UInt 0 | 1 Indicates whether the server supports the 
Provider Dictionary Download feature:

• 1: The server supports provider dictionary 
downloads.

• 0: The server does not support provider 
dictionary downloads.

If this element is missing, the server does not 
support provider dictionary downloads.

For more information on the provider dictionary 
download feature, refer to the Message API C++ 
Edition Developers Guide.

SupportProviderDictionaryDownload 
defaults to 0.

a. For further details on TREP Authentication, refer to the TREP Authentication User Manual, accessible on Thomson Reuters 
MyAccount in the DACS product documentation set.

OmmConsumerConfig ommConsumerConfig;

ommConsumerConfig.operationModel( 

OmmConsumerConfig::UserDispatchEnum );

Login::LoginReq loginRequest;

loginRequest.name("user");

loginRequest.applicationId("127");

loginRequest.position("127.0.0.1/net");

loginRequest.allowSuspectData(true);

ommConsumerConfig.addAdminMsg(loginRequest.getMessage());

ELEMENT NAME
DATA TYPE 
ENUMERATION

RANGE/
EXAMPLE

DESCRIPTION

Table 6: Login Request Attrib Elements (Continued)
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 17
EMAC320UMRDM.180

https://my.thomsonreuters.com/products
https://my.thomsonreuters.com/products


Chapter 3    Login Domain
3.2.4 Login Refresh Message

A Login refresh message is encoded using RefreshMsg and sent by OMM interactive provider applications. This message is 
used to respond to a Login Request message after the user’s Login is accepted. An OMM provider can use the Login request 
information to authenticate users with DACS. After authentication, a refresh message is sent to convey that the login was 
accepted. If the login is rejected, a Login status message should be sent as described in Section 3.2.7.

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_LOGIN = 1

State Optional. 

For the Refresh message, when accepting Login:

• StreamState = OmmState.Open

• DataState = OmmState.Ok

• StatusCode = OmmState.None

Solicited Required. Specifies whether the refresh was solicited. 

• true: Indicates that the refresh was solicited.

• false: Indicates that the refresh was unsolicited.

Indications • Required: Complete set to true, which indicates the refresh is complete. The content of a Login 
Refresh message is expected to be atomic and contained in a single part, therefore 
RefreshMsg.Complete must be set to true.

• Optional: ClearCache set to true, which indicates to clear the cache.

QoS Not used.

SeqNum Not used. 

ItemGroup Not used.

PermissionData Not used.

extendedHeader Not used.

ServiceId Not used.

NameType Optional. 

Possible values:

• USER_NAME

• USER_EMAIL_ADDRESS

• USER_TOKEN

•

• USER_AUTHN_TOKEN

If NameType is not set then it is assumed to be a NameType of USER_NAME.

If present, the value should match the type specified in the Login request.

Name Optional. 

Name should match the Name specified in the Login request and contain appropriate content 
corresponding to the NameType specification.

Filter Not used.

Table 7: Login Refresh Message  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 18
EMAC320UMRDM.180



Chapter 3    Login Domain
Identifier Not used.

Attrib Optional. 

Typically an ElementList. Elements are specified in Section 3.2.5.

Payload Optional. 

Typically present when login requests connection configuration or permission profile information. The 
payload is sent as an ElementList. For payload details, refer to Section 3.3.1.

COMPONENT DESCRIPTION / VALUE

Table 7: Login Refresh Message (Continued)
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 19
EMAC320UMRDM.180



Chapter 3    Login Domain
3.2.5 Login Refresh Elements

The Login Attrib can be used to send additional authentication information and user preferences between components. The 
attribContainerType is an ElementList, which can contain any of the following predefined elements (none of which are 
required):

ELEMENT NAME
DATA TYPE 
ENUMERATION

RANGE/EXAMPLE DESCRIPTION

AllowSuspectData UInt 0 | 1 Sets whether the provider application passes 
along suspect StreamState information.

• 1: The provider application passes along 
suspect StreamState information. 1 is the 
default setting.

• 0: The provider application does not pass 
along suspect data.

Any suspect stream will be closed with an 
OmmState.ClosedRecover state. 

For more information, refer to Section 3.4.5.

ApplicationId ASCII 1 - 65535

e.g., 256

Specifies the DACS application ID. If the 
server authenticates with DACS, the 
consumer application may be required to pass 
in a valid ApplicationId. This should match 
whatever was sent in the request. This must 
be unique for each application. IDs from 1 to 
256 are reserved for permanent market data 
applications. Thomson Reuters assigns these 
and they are uniform across all client systems. 
IDs from 257 to 65535 are available for site-
specific use.

ApplicationName ASCII name of application 

e.g., Elektron 
Message API

Identifies the application sending the Login 
request or response message. When present, 
the application name in the Login request 
identifies the OMM consumer and the 
application name in the Login response 
identifies the OMM provider.

AuthenticationErrorCode UInt From 0 to 
4294967296

Specifies the code for a specific TREP 
Authentication error (or non-error) condition. 0 
indicates no error condition and is the default 
setting.

AuthenticationErrorText ASCII User-defined value Text accompanying and explaining the 
AuthenticationErrorCode.

AuthenticationExtendedResp Buffer User-defined value This is a binary buffer. 
AuthenticationExtendedResp contains 
additional customer-defined data associated 
with the AuthenticationToken element sent 
in the original Login Request.

Table 8: Login Refresh Attrib Elements  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 20
EMAC320UMRDM.180



Chapter 3    Login Domain
AuthenticationTTReissue UInt User-defined value Indicates when a new authentication token 
needs to be reissued (in UNIX epoch time).

Position ASCII ip addr/hostname 
or ip addr/net 

e.g.:

192.168.1.1/net

Specifies the DACS location. If the server 
authenticates with DACS, the consumer 
application might be required to pass in a valid 
position. If present, this should match 
whatever was sent in the request or be set to 
the IP address of the connected client.

ProvidePermissionExpressions UInt 0 | 1 If specified on a Login Refresh, indicates that 
a provider will send permission expression 
information with its responses. 
ProvidePermissionExpressions is typically 
present because the login request message 
requested this information. Permission 
expressions allow for items to be proxy 
permissioned by a consumer via content-
based entitlements.

ProvidePermissionExpressions defaults to 
1.

ProvidePermissionProfile UInt 0 | 1 If specified on the Login Refresh, indicates 
that the permission profile is provided. This is 
typically present because the login request 
message requested this information. An 
application can use the permission profile to 
perform proxy permissioning.

ProvidePermissionProfile defaults to 1.

SingleOpen UInt 0 | 1 Specifies whether the provider drives stream 
recovery:

• 1: The provider drives stream recovery. 1 is 
the default setting.

• 0: The provider does not drive stream 
recovery; it is the responsibility of the 
downstream application.

For more information, refer to Section 3.4.5.

ELEMENT NAME
DATA TYPE 
ENUMERATION

RANGE/EXAMPLE DESCRIPTION

Table 8: Login Refresh Attrib Elements (Continued)
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 21
EMAC320UMRDM.180



Chapter 3    Login Domain
SupportBatchRequests UInt 0, 7 Indicates whether the provider supports batch 
messages. Consumers use batch messages 
to specify multiple items or streams in the 
same request or close message. For more 
information on batch requesting, refer to the 
Message API C++ Edition Developers Guide.

• 0x0 (or if absent): The provider does not 
support batch messages. 0 is the default 
setting.

• 0x1: The provider supports batch request.

• 0x2: The provider supports batch reissue.

• 0x4: The provider supports batch close.

For instance, if value is set to 7, then based on 
combination of bits set (0x1 + 0x2 + 0x4), 
provider supports batch request, reissue, and 
close.

SupportEnhancedSymbolList UInt 0 | 1 Indicates whether the provider supports 
enhanced symbol list functionality.

• 0: The provider does not support Symbol 
List enhancements. 0 is the default setting.

• 1: The provider supports Symbol List data 
streams.

SupportOMMPost UInt 0 | 1 Indicates whether the provider supports OMM 
posting and whether the user is permissioned 
to post:

• 1: The provider supports OMM posting and 
the user is permissioned.

• 0: The provider supports the OMM posting 
feature, but the user is not permissioned. 0 
is the default setting.

• If absent, the server does not support the 
OMM Post feature.

For more information on Posting, refer to the 
Message API C++ Edition Developers Guide.

ELEMENT NAME
DATA TYPE 
ENUMERATION

RANGE/EXAMPLE DESCRIPTION

Table 8: Login Refresh Attrib Elements (Continued)
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 22
EMAC320UMRDM.180



Chapter 3    Login Domain
SupportOptimizedPauseResume UInt 0 | 1 Indicates whether the provider supports 
Optimized Pause and Resume. Optimized 
Pause and Resume allows for pausing/
resuming of individual item streams or 
pausing all item streams (by pausing the Login 
stream). For more information on Pause and 
Resume, refer to the Message API C++ 
Edition Developers Guide.

• 1: The server supports optimized pause 
and resume.

• 0 (or if absent): The server does not 
support optimized pause and resume. 0 is 
the default setting.

SupportPauseResume UInt 0 | 1 Indicates whether the server supports pause 
and resume.

• 1: The server supports pause and resume.

• 0: (or if absent): The server does not 
support pause and resume. 0 is the default 
setting.

SupportProviderDictionaryDownl
oad

UInt 0 | 1 Indicates whether the server supports the 
Provider Dictionary Download feature:

• 1: The server supports the provider 
dictionary download.

• 0: The server does not support the 
provider dictionary download feature. 0 is 
the default setting.

If this element is missing, the server does not 
support the provider dictionary download 
feature.

For more information on the provider 
dictionary download feature, refer to the 
Message API C++ Edition Developers Guide.

ELEMENT NAME
DATA TYPE 
ENUMERATION

RANGE/EXAMPLE DESCRIPTION

Table 8: Login Refresh Attrib Elements (Continued)
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 23
EMAC320UMRDM.180



Chapter 3    Login Domain
SupportStandby UInt 0 | 1 Indicates whether the provider supports Warm 
Standby functionality. If supported, a provider 
can be told to run as an active or a standby 
server, where the active will behave as usual. 
The standby will respond to item requests only 
with the message header and will forward any 
state changing information. If informed that 
the active server failed, the standby begins 
sending responses and assumes active 
functionality.

• 1: The provider supports a Warm Standby 
group setup.

• 0 (or if absent): The provider does not 
support warm standby functionality. 0 is the 
default setting.

For more information on Warm Standby 
functionality, refer to Section 3.2.12.

SupportViewRequests UInt 0 | 1 Indicates whether the provider supports 
requesting with Dynamic View information. 
Using Dynamic Views, a user can request only 
the specific contents of the response 
information in which they are interested. For 
more information on using Dynamic Views, 
refer to the Message API C++ Edition 
Developers Guide. 

• 1: The provider supports Dynamic Views 
specified on request messages. 

• 0 (or if absent): The provider does not 
support Dynamic Views specified on 
request messages. 0 is the default setting.

ELEMENT NAME
DATA TYPE 
ENUMERATION

RANGE/EXAMPLE DESCRIPTION

Table 8: Login Refresh Attrib Elements (Continued)
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 24
EMAC320UMRDM.180



Chapter 3    Login Domain
3.2.6 Login Refresh Domain Representation

The Domain Representation of the Login Refresh Message is an easy-to-use object which can set up and return an encoded 
OMM Login Refresh Message without extensive effort. You can find this object in EMA’s Login package.

Figure 4.  Login Refresh Domain Representation Code Usage Example

Login::LoginRefresh loginRefresh = Login::LoginRefresh();

loginRefresh.allowSuspectData(true);

loginRefresh.singleOpen(true);

loginRefresh.name("user");

loginRefresh.solicited(true);

loginRefresh.state( OmmState::OpenEnum, OmmState::OkEnum, OmmState::NoneEnum, "Login accepted" );

ommProvider.submit( loginRefresh.getMessage(), handle);
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 25
EMAC320UMRDM.180



Chapter 3    Login Domain
3.2.7 Login Status Message

OMM provider and OMM non-interactive provider applications use the Login status message to convey state information 
associated with the login stream. Such state information can indicate that a login stream cannot be established or to inform a 
consumer of a state change associated with an open login stream.

The Login status message can also be used to reject a login request or close an existing login stream. When a login stream is 
closed via a status, any other open streams associated with the user are also closed as a result.

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_LOGIN = 1

State Optional.

For Status, when rejecting Login:

• StreamState = OmmState.Closed

• DataState = OmmState.Ok

• StatusCode = OmmState.NotAuthorized

For Status, when user needs to retry login, for example when DACS is not yet connected to 
ADS:

• StreamState = OmmState.ClosedRecover

• DataState = OmmState.Suspect

• StatusCode = OmmState.NotAuthorized

SeqNum Optional.

ItemGroup Not used.

PermissionData Not used.

extendedHeader Not used.

ServiceId Not used.

NameType Optional. Possible values:

• USER_NAME

• USER_EMAIL_ADDRESS

• USER_TOKEN

• USER_COOKIE

If present, NameType should match the type specified in the Login request. If NameType is 
unspecified, it is assumed to be a NameType of USER_NAME.

Name Optional. Name should match the one used in the Login request and should contain appropriate 
content corresponding to the specification.

Filter Not used.

Identifier Not used.

Attrib Optional.

Typically an ElementList. For the contents of ElementList, refer to Section 3.2.5.

Payload Not used.

Table 9: Login Status Message Member Use  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 26
EMAC320UMRDM.180



Chapter 3    Login Domain
3.2.8 Login Status Elements

The Login Attrib can be used to send additional authentication information and user preferences between components. The 
attribContainerType is an ElementList, which can contain any of the following predefined elements (none of which are 
required):

3.2.9 Login Status Domain Representation

The Domain Representation of the Login Status Message is an easy-to-use object which can set up and return an encoded 
OMM Login Status Message without extensive effort. You can find this object in EMA’s Login package.

Figure 5.  Login Status Domain Representation Code Usage Example

3.2.10 Login Update Message

Update messages are currently not used or supported on a Login stream.

ELEMENT NAME
DATA TYPE 
ENUMERATION

RANGE/EXAMPLE DESCRIPTION

AuthenticationErrorCode UInt From 0 to 
4294967296

Specifies the code for a specific TREP 
Authentication error (or non-error) condition. 0 
indicates no error condition and is the default 
setting.

AuthenticationErrorText ASCII Text accompanying and explaining the 
AuthenticationErrorCode.

Table 10: Login Status Attrib Elements  

Login::LoginStatus loginStatus = Login::LoginStatus();

if (requestMsg.hasNameType())

    loginStatus.nameType(requestMsg.getNameType());

if (requestMsg.hasName())

    loginStatus.name(requestMsg.getName());

loginStatus.state( OmmState::ClosedEnum, OmmState::SuspectEnum, OmmState::NotFoundEnum, "Invalid 

        domain" );

ommProvider.submit(loginStatus.getMessage(), handle);
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 27
EMAC320UMRDM.180



Chapter 3    Login Domain
3.2.11 Login Close Message

A Login close message is encoded and sent by OMM consumer applications. This message allows a consumer to log out of 
the system. Closing a login stream is equivalent to a ‘Close All’ type of message, where all open streams are closed (thus all 
other streams associated with the user are closed). A provider can log off a user and close all of that user’s streams via a 
Login Status message (for details, refer to Section 3.2.7).

3.2.12 Login Generic Message Use

A Login generic message is encoded and sent by OMM consumer applications. This message informs an interactive provider 
of its role in a Warm Standby group (either as an Active or Standby provider). When Active, a provider behaves normally. 
However, if a provider is Standby, it responds to requests only with a message header (intended to allow a consumer 
application to confirm the availability of their requested data across active and standby servers), and forwards any state-
related messages (i.e., unsolicited refresh messages, status messages). While in Standby mode, a provider should aggregate 
changes to item streams whenever possible. If the provider is changed from Standby to Active via this message, all 
aggregated update messages are passed along. When aggregation is not possible, a full, unsolicited refresh message is 
passed along.

The consumer application is responsible for ensuring that items are available and equivalent across all providers in a warm 
standby group. This includes managing state and availability differences as well as item group differences. 

Content for a Login Generic message is expected to be atomic and contained in a single part, therefore 
GenericMsg.Complete should be present in the Generic message’s flags. 

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_LOGIN = 1

extendedHeader Not used.

Payload Not used.

Table 11: Login Close Message Member Use  

Note: The Elektron Message API supports GenericMsg use on the Login domain only for the sending and receiving of 
information related to “ConsumerConnectionStatus” Warm Standby Mode.

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_LOGIN = 1

Indications Required.

Complete: true, indicates that the refresh is complete.

PartNum Not used.

SeqNum Not used.

secondarySeqNum Not used.

PermissionData Not used.

extendedHeader Not used.

Table 12: Login Generic Message Member Use  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 28
EMAC320UMRDM.180



Chapter 3    Login Domain
3.2.13 Login Post Message

OMM consumer applications can encode and send data for any item via Post messages on the item’s Login stream. This is 
known as off-stream posting because items are posted without using that item’s dedicated stream. Posting an item on its 
own dedicated stream is referred to as on-stream posting.

When an application is posting off-stream, the PostMsg requires Name and ServiceId information. For more details on posting, 
refer to the Message API C++ Edition Developers Guide.

3.2.14 Login Ack Message

OMM provider applications encode and send acknowledgment messages (AckMsg) to acknowledge the receipt of Post 
messages. This message is used whenever a consumer is posting off-stream and asks for acknowledgments. The 
acknowledgment contains a positive (ACK) or negative (NACK) code. For more details on posting, see the Message API C++ 
Edition Developers Guide.

ServiceId Not used.

NameType Not used.

Name Required. Name must be set to ConsumerConnectionStatus.

Filter Not used.

Identifier Not used.

Attrib Not used.

Payload Required. Indicates whether a provider acts as an Active or Standby server. Payload is sent as 
a Map type. For further details, refer to Section 3.3.2.

COMPONENT DESCRIPTION / VALUE

Table 12: Login Generic Message Member Use (Continued)
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 29
EMAC320UMRDM.180



Chapter 3    Login Domain
3.3 Data

3.3.1 Login Refresh Message Payload

When a Login request message asks for connection configuration information (i.e., DownloadConnectionConfig = 1), a 
provider capable of supplying these details should respond with extended connection information in the RefreshMsg payload. 
This information can be useful for load balancing connections across multiple providers or ADS components. Load balancing 
can be set up in a manner where some well-known providers act solely as load-balancing servers, monitoring the load and 
state of other providers and directing consumers to less-loaded providers to handle the information exchange.

The extended connection information contains a list of other providers, along with connection and load-related information, 
and is formatted as a sorted Vector type, where each VectorEntry contains an ElementList. Each vector entry contains 
data specific to one provider. The summary data (an ElementList) contains information about the number of standby 
providers to which the consumer should connect. If this value is non-zero, the consumer is expected to support Warm Standby 
functionality and connect to multiple providers.

The list should be sorted in order of best to worst choice.

Figure 6.  Login Refresh Message Payload
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 30
EMAC320UMRDM.180



Chapter 3    Login Domain
When the payload is present, the summary data ElementList must contain the following element (which has no default):

Each VectorEntry contains an ElementList, each list describing a single provider. Possible elements in this list are as 
follows, with any default behavior included in the description:

NAME TYPE RANGE/EXAMPLE DESCRIPTION

NumStandbyServers UInt 0 - 0xFFFFFFFF 
value

Specifies the number of standby servers to 
which the client can connect.

If set to 0, only one provider is connected, 
which serves as the primary connection (i.e., 
warm standby should not be attempted).

Table 13: Vector.SummaryData’s ElementList Contents  

NAME TYPE RANGE/EXAMPLE DESCRIPTION

Hostname ASCII “myHostName”

“192.168.1.100”

Conditional. Specifies the candidate 
provider’s IP address or hostname. Hostname 
is required when a payload is present.

Port UInt 14002 Conditional. Specifies the candidate 
provider’s port number. Port is required when 
a payload is present.

LoadFactor UInt 0 - 65535 Describes the load of the provider, where 0 is 
the least loaded and 65535 is the most 
loaded. The Vector is expected to be sorted, 
so a consumer need not traverse the list to 
find the least loaded; the first VectorEntry 
should contain an ElementList describing 
the least-loaded provider.

LoadFactor defaults to 65535.

ServerType UInt 0 | 1 When using a warm standby setup, 
ServerType specifies the provider’s expected 
behavior:

• 0: This provider should be the Active 
server.

• 1: This provider should be the Standby 
server. 1 is the default setting.

SystemID ASCII For future use.

Table 14: ElementList Contents  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 31
EMAC320UMRDM.180



Chapter 3    Login Domain
3.3.2 Login Generic Message Payload

The Login data structure for Payload is a Map of ASCII -> ElementList. Each key is a ServiceName. Each ElementList 
contains one ElementEntry.There is no summary data and typically only one map entry that informs the provider of its warm 
standby role.

Figure 7.  Login Generic Message Payload

ELEMENT NAME DATA TYPE RANGE/EXAMPLE DESCRIPTION

WarmStandbyMode UInt 0 | 1 Required. Informs an interactive provider of its role 
in a Warm Standby group.

• 0: Informs the provider to be an Active server

• 1: Informs the provider to be a Standby server.

WarmStandbyMode does not have a default.

Table 15: MapEntry Elements  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 32
EMAC320UMRDM.180



Chapter 3    Login Domain
3.4 Special Semantics

3.4.1 Login Direction

Login Request Messages are always sent from client to server, regardless of which is the provider and which is the consumer. 
Consumers send a Login Request Message to the providers they connect to, while non interactive provider send a Login 
Request Message to the consumer server.

3.4.2 Initial Login

An EMA Consumer sends a login request to an OMM Provider application on behalf of users who are using login attributes 
specified in OmmConsumerConfig. Users can register to get a login handle to receive a login status or use the login handle to 
reissue and post messages on a login stream.

3.4.3 Multiple Logins

EMA does not support multiple logins per OmmConsumer as login stream is opened internally by EMA. If multiple logins are 
needed in the applications, users need to create additional OmmConsumer instances, one per login.

3.4.4 Group and Service Status

Group and service status messages do not apply to the Login domain.
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 33
EMAC320UMRDM.180



Chapter 3    Login Domain
3.4.5 Single Open and Allow Suspect Data Behavior

The SingleOpen and AllowSuspectData Elements that are passed via the Attrib can effect how state information is 
processed. When the provider indicates support for SingleOpen behavior, the provider should drive the recovery of item 
streams. If no provider support is indicated, the consumer should drive any recovery.

The following table shows how a provider can convert messages to honor the consumer’s SingleOpen and 
AllowSuspectData settings. The first column in the table shows the provider’s actual StreamState and DataState. Each 
subsequent column shows how this state information can be modified to follow that column’s specific SingleOpen and 
AllowSuspectData settings. If any SingleOpen and AllowSuspectData configuration causes a contradiction in behavior 
(e.g., SingleOpen indicates that the provider should handle recovery, but AllowSuspectData indicates that the consumer 
does not want to receive suspect status), SingleOpen behavior takes precedence.

The status in the table could be from a Directory STATE filter entry, from a Directory GROUP filter entry, or from an item Status 
Message. For more information on Status, refer to the Message API C++ Edition Developers Guide.

The following table uses the abbreviations:

• SS for StreamState 

• DS for DataState 

Note: The Elektron Message API does not perform any special processing based on the SingleOpen and AllowSuspectData 
settings. The provider application must perform any necessary conversion.

If AcceptingRequests is FALSE, new requests should not be made to a provider application, regardless of ServiceState. 
However, even if AcceptingRequests is FALSE, reissue requests can still be made for any item streams that are currently 
open to the provider.

ACTUAL STATE 
INFORMATION

MESSAGE SENT WHEN: 
SINGLEOPEN = 1
ALLOWSUSPECTDATA = 1

MESSAGE SENT WHEN:
SINGLEOPEN = 1
ALLOWSUSPECTDATA = 0

MESSAGE SENT WHEN: 
SINGLEOPEN = 0
ALLOWSUSPECTDATA = 1

MESSAGE SENT WHEN: 
SINGLEOPEN = 0
ALLOWSUSPECTDATA = 
0

SS = OPEN
DS = SUSPECT

SS = OPEN
DS = SUSPECT

SS = OPEN
DS = SUSPECT

SS = OPEN
DS = SUSPECT

SS = CLOSED_RECOVER
DS = SUSPECT

SS = CLOSED_RECOVER
DS = SUSPECT

SS = OPEN
DS = SUSPECT

SS = OPEN
DS = SUSPECT

SS = CLOSED_RECOVER
DS = SUSPECT

SS = CLOSED_RECOVER
DS = SUSPECT

New item request whena:
ServiceState = DOWN
AcceptingRequests = TRUE

a. For more information, refer to Source Directory information in Chapter 4, Source Directory Domain.

SS = OPEN
DS = SUSPECT

SS = OPEN
DS = SUSPECT

SS = CLOSED_RECOVER
DS = SUSPECT

SS = CLOSED_RECOVER
DS = SUSPECT

New item requests whena:
ServiceState = UP
AcceptingRequests = TRUE

SS = OPEN
DS = OK or SUSPECT based 
on individual item’s state.

SS = OPEN
DS = OK or SUSPECT based 
on individual item’s state.

SS = OPEN
DS = OK or SUSPECT based 
on individual item’s state.

If DS = OK: SS = OPEN
if DS = SUSPECT: SS = 
CLOSED_RECOVER

New item requests whena:
ServiceState = UP or DOWN
AcceptingRequests = 
FALSE

SS = OPEN
DS = SUSPECT based on 
individual item’s state

SS = OPEN
DS = SUSPECT based on 
individual item’s state

SS = CLOSED_RECOVER
DS = SUSPECT based on 
individual item’s state

SS = CLOSED_RECOVER
DS = SUSPECT

Connection goes down SS = OPEN
DS = SUSPECT based on 
individual item’s state

SS = OPEN
DS = SUSPECT based on 
individual item’s state

SS = CLOSED_RECOVER
DS = SUSPECT based on 
individual item’s state

SS = CLOSED_RECOVER
DS = SUSPECT

Table 16: SingleOpen and AllowSuspectData Handling  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 34
EMAC320UMRDM.180



Chapter 3    Login Domain
3.5 Specific Usage: RDF Direct Login

When sending a Login Request message to an RDF Direct, the Name can be an ASCII string composed of printable characters. 
The Name is used for scoping some RDF Direct’s configuration. The NameType must be USER_NAME.

In the Attrib’s ElementList, SingleOpen, AllowSuspectData, and ProvidePermissionExpressions are supported. 
ApplicationId, Position, Password, and ProvidePermissionProfile are ignored.

The request and response message Payloads have no data.

RDF Direct supports only one login per connection.

3.6 Specific Usage: Enterprise Platform

When sending a Login to a DACS-enabled Thomson Reuters Enterprise Platform (TREP), the Name should be a valid 
username in DACS. The Attrib containing ApplicationId and Position will also be used for DACS authorization. Name is 
used for scoping aspects of the TREP configuration. The NameType must be USER_NAME.

In the Attrib’s ElementList, ApplicationId, Position, SingleOpen, AllowSuspectData, and 
ProvidePermissionExpressions are supported. Password and ProvidePermissionProfile are ignored. They may be 
echoed to the consumer, but the values are not necessarily correct.

Request and response message Payloads have no data.

TREP supports only one login per connection.

3.7 Specific Usage: Login Credentials Update Feature

Internally Elektron Message API stores all login credentials (e.g., user name, name type, login attributes), so it can use them 
later during connection recovery phase. These credentials can be changed by the application at any point in time after a 
connection and login is established. To change login credentials, an application needs to reissue a login request message with 
the new credentials. This new request message must meet the following criteria:

• A new user name parameter, different from the one specified on a prior request or reissue, must be specified.

• The NameType parameter must be specified as USER_TOKEN on all, the initial request and all subsequent reissues.

• The Interactions set in the reissue must match the original InteractionType.

If all of the above conditions/criteria are met, Elektron Message API will send the reissue with the new login credentials to the 
server and will internally store the new/updated login credentials to be used later during connection recovery. If all of the above 
conditions/criteria are not met, Elektron Message API will apply the standard login reissue processing. If no new/updated login 
credentials are specified by application, during the connection recovery phase Elektron Message API will use the previously 
used ones.
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 35
EMAC320UMRDM.180



Chapter 4    Source Directory Domain
Chapter 4 Source Directory Domain

4.1 Description

The Source Directory domain model conveys:

• Information about all available services and their capabilities. This includes information about domain types supported 
within a service, the service’s state, the QoS, and any item group information associated with the service. Each service is 
associated with a unique ServiceName or ServiceId.

• Status information associated with item groups. This allows a single message to change the state of all associated items, 
avoiding the need to send a status message for each individual item. The consumer is responsible for applying any 
changes to its open items. For details, refer to Section 4.3.1.2 and Section 4.3.1.3.

• Source Mirroring information between an ADH and OMM interactive provider applications exchanged via a specifically-
formatted generic message as described in Section 4.2.5. 
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 36
EMAC320UMRDM.180



Chapter 4    Source Directory Domain
4.2 Usage

4.2.1 Source Directory Request Message

A Directory request message is encoded using ReqMsg with default or user-configured values and sent internally by 
OmmConsumer in the constructor of this class. A consumer can request information about all services by omitting ServiceName 
or ServiceId information, or specify a ServiceName or ServiceId to request information about only that service. Because the 
Source Directory domain uses a FilterList, a consumer can indicate the specific source related information in which it is 
interested via a Filter. Each bit-value represented in the filter corresponds to an information set that can be provided in 
response messages. A consumer can change the requested filter via a reissue. For more details about the FilterList type, 
refer to the Message API C++ Edition Developers Guide.

Users can configure a directory request message using the OmmConsumerConfig.addAdminMsg() to override the default 
directory request.

Thomson Reuters recommends that a consumer application minimally request SERVICE_INFO_FILTER and 
SERVICE_STATE_FILTER for the Source Directory:

• The Info filter contains the ServiceName and ServiceId data for all available services. When an appropriate service is 
discovered by the OMM Consumer, the ServiceName or ServiceId associated with the service is used on 
subsequent requests to that service.

• The State filter contains status data for the service. Status data informs the Consumer whether the service is up (and 
available) or down (and unavailable).

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_DIRECTORY = 4

Interactions Required.

• InitialImage: true, indicates initial image is required

• InterestAfterRefresh: true, indicates streaming request is required

Only streaming and non-streaming requests are supported. If you need to send a 
ConsumerStatus generic message over the Directory stream, you must specify the interaction 
as "Streaming" in the request.

QoS Not used.

worstQos Not used.

priorityClass Not used.

priorityCount Not used.

extendedHeader Not used.

NameType Not used.

Name Not used.

Table 17: Source Directory Request Message  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 37
EMAC320UMRDM.180



Chapter 4    Source Directory Domain
Filter Required. Specifies a filter indicating the specific data in which a consumer is interested. 
Available categories include:

• SERVICE_INFO_FILTER = 0x01 

• SERVICE_STATE_FILTER = 0x02 

• SERVICE_GROUP_FILTER = 0x04 

• SERVICE_LOAD_FILTER = 0x08 

• SERVICE_DATA_FILTER = 0x10 

• SERVICE_LINK_FILTER = 0x20 

For details on the contents of each filter entry, refer to Section 4.3.1.1.

ServiceName Optional. 

• If present, the directory request is for the specified service.

• If neither the ServiceId nor the ServiceName is specified, then the request is for the entire 
directory.

Note: If the application requests a specific service, it should set either the ServiceId or 
ServiceName of the service, but not both.

ServiceId Optional. 

• If present, the directory request is for the specified service.

• If neither the ServiceId nor the ServiceName is specified, then the request is for the entire 
directory.

Note: If the application requests a specific service, it should set either the ServiceId or 
ServiceName of the service, but not both.

Identifier Not used.

Attrib Not used.

Payload Not used.

COMPONENT DESCRIPTION / VALUE

Table 17: Source Directory Request Message (Continued)
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 38
EMAC320UMRDM.180



Chapter 4    Source Directory Domain
4.2.2 Source Directory Refresh Message

A Directory Refresh Message is encoded using a RefreshMsg and sent by OMM provider and OMM non-interactive provider 
applications. This message provides information about currently-known services, as well as additional details ranging from 
state information to provided domain types.

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_DIRECTORY = 4

State Required. Indicates stream and data state information.

Solicited Required. Specifies whether the refresh was solicited. Available values are:

• true: Indicates the refresh was solicited.

• false: Indicates the refresh was unsolicited.

Indications Conditional. 

• Complete: true, indicates refresh complete 

• ClearCache: true, indicates clear cache

• DoNotCache: true, indicates this refresh message must not be cached.

For more details, refer to the FilterEntries in Section 4.3.1.

QoS Not used.

SeqNum Optional. A user-specified, item-level sequence number that the application can use to 
sequence messages within this stream.

ItemGroup Not used.

PermissionData Not used.

extendedHeader Not used.

ServiceId Not used.

NameType Not used.

Name Not used.

Filter Required. Identifies the filtered entries provided in this response. When possible, this should 
match the filter set in the consumer’s request. For additional details, refer to the Filter 
member in Section 4.2.1.

Identifier Not used.

Attrib Not used.

Payload Required. The payload contains data about available services in the form of a Map where each 
entry’s key is one ServiceName. For additional details, refer to Section 4.3.1.

Table 18: Source Directory Refresh Message  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 39
EMAC320UMRDM.180



Chapter 4    Source Directory Domain
4.2.3 Source Directory Update Message

A Source Directory Update Message is encoded using an UpdateMsg and sent by OMM provider and OMM non-interactive 
provider applications. An Update message can:

• Indicate the addition or removal of services from the system or changes to existing services.

• Convey item group status information via the State and Group filter entries. For more information about item group 
use, refer to the Message API C++ Edition Developers Guide.

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_DIRECTORY = 4

Indications Conditional. 

• DoNotCache: true, indicates this update message must not be cached.

• DoNotConflate: true, indicates this update message must not be conflated.

For more details, refer to the FilterEntries in Section 4.3.1.

UpdateTypeNum Not used.

SeqNum Optional. A user-specified, item-level sequence number that the application can use to 
sequence messages in this stream.

ConflatedCount Not used.

ConflatedTime Not used.

PermissionData Not used.

extendedHeader Not used.

ServiceId Not used.

NameType Not used.

Name Not used.

Filter Optional. The Filter indicates which filter entries are provided in this response. For an 
update, this conveys only the ID values associated with filter entries present in the update 
payload.

For more details, refer to the Filter member in Section 4.2.1.

Identifier Not used.

Attrib Not used.

Payload Required. The payload contains only the changed information associated with the provided 
services. For more details, refer to Section 4.3.1.

Table 19: Source Directory Update Message  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 40
EMAC320UMRDM.180



Chapter 4    Source Directory Domain
4.2.4 Source Directory Status Message

A Source Directory status message is encoded using a StatusMsg and sent by both OMM interactive provider and non-
interactive provider applications. This message conveys state change information associated with a source directory stream. 
Such state information can indicate that a directory stream cannot be established or to inform a consumer of a state change 
associated with an open directory stream. The Directory Status message can also be used to close an existing directory 
stream.

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_DIRECTORY = 4

State Optional. Contains stream and data state information for the directory stream.

• StreamState

• DataState

• StatusCode

ItemGroup Not used.

Indications Optional.

ClearCache: true, Indicates the application should clear its cache

For more details, refer to the FilterEntries described in Section 4.3.1.

PermissionData Optional. If present, this is the new permissioning information associated with all contents on 
the stream.

extendedHeader Not used.

ServiceId Not used.

NameType Not used.

Name Not used.

Filter Required. The filter represents the filter entries being provided in this response. When 
possible, this should match the filter as set in the consumer’s request.

For additional details, refer to the Filter member in

Identifier Not used.

Attrib Not used.

Payload Not used.

Table 20: Source Directory Status Message  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 41
EMAC320UMRDM.180



Chapter 4    Source Directory Domain
4.2.5 Source Directory Generic Message

A Source Directory Generic message is encoded and sent by an ADH when using a ‘hot standby’ configuration. When running 
in hot standby mode, the ADH can leverage source mirroring and use a generic message to convey usage information to 
upstream providers. A generic message can inform providers whether the ADH is an active server without a standby 
(ActiveNoStandby), an active server with a standby (ActiveWithStandby) or a standby provider (Standby). This message is 
mainly for informational purposes, and allows a provider to better understand their role in a hot standby environment (the 
provider does not require a return action or acknowledgment).

A provider indicates each service’s ability to process this message via the AcceptingConsumerStatus element in its Source 
Directory responses (refer to  Section 4.3.1.1).

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_DIRECTORY = 4

PartNum Not used.

SeqNum Optional. A user-specified, item-level sequence number that the application can use to 
sequence messages in this stream.

secondarySeqNum Not used.

PermissionData Not used.

extendedHeader Not used.

NameType Not used.

Name Required. The name of this message must be ConsumerStatus.

Filter Not used.

Identifier Not used.

Attrib Not used.

Payload Required. The payload is a Map whose entries contain the Source Mirroring status for each 
service. For the full structure, refer to  Section 4.3.2.

Table 21: Source Directory Generic Message  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 42
EMAC320UMRDM.180



Chapter 4    Source Directory Domain
4.3 Data

4.3.1 Source Directory Refresh and Update Payload

A list of services is represented by a Map. Each MapEntry represents a known service and is uniquely identified by its 
ServiceId (i.e., its key).

The information about each service is represented as a FilterList. Each FilterEntry contains one of six different 
categories of information. These categories should correspond to the Filter member of the refresh or update. These 
categories are described in Table 23.

Figure 8.  Source Directory Refresh and Update Message Payload

There are six categories of information about a service, each represented by one FilterEntry. Categories can be added or 
updated in update messages (note that the clear action FilterEntry.Clear is not used, and that the Info category should not 
change) for Directory and Dictionary domain message models as part of a reissue. None of these categories use permission 
data. In the following table, the description for each FilterEntry includes whether the content is extensible.

KEY TYPE CONTAINER TYPE PERMISSION DATA DESCRIPTION

UInt for a service ID FilterList Not used Contains information for each known service. 
The key is the service’s ServiceId.

Table 22: Source Directory Map Contents  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 43
EMAC320UMRDM.180



Chapter 4    Source Directory Domain
FILTERENTRY ID
(CORRESPONDING FILTER BIT-VALUE)

TYPE DESCRIPTION

SERVICE_INFO_ID=
(SERVICE_INFO_FILTER=)

ElementList Provider applications must be able to provide 
this information.

Identifies a service and its available data. This 
content is extensible.

Refer to.

SERVICE_STATE_ID

(SERVICE_STATE_FILTER=
ElementList Provider applications must be able to provide 

this information.

Describes the current state of a service (i.e., the 
service’s current ability to provide data). Can also 
change the status of all items associated with this 
service. This content is not extensible.

The effects of this category occur immediately. 
Therefore, the initiating UpdateMsg should set 
DoNotConflate to true.

Refer to.

SERVICE_GROUP_ID=
(SERVICE_GROUP_FILTER=)

ElementList Manages group information. Can change the 
status of a group of items or merge items from one 
group to another. This content is not extensible.

The effects of this category occur immediately and 
only affect existing items. Therefore, the initiating 
UpdateMsg should set DoNotConflate and 
DoNotCache to true.

Refer to.

SERVICE_LOAD_ID=
(SERVICE_LOAD_FILTER=)

ElementList Information about the current allowable workload 
of this service, including how many items are 
currently being serviced. This content is 
extensible.

Optionally, the initiating UpdateMsg can set 
DoNotConflate to true.

Refer to.

SERVICE_DATA_ID=
(SERVICE_DATA_FILTER=)

ElementList Includes broadcast data that applies to all items 
requested from that service. This information is 
typically provided in a dedicated UpdateMsg and 
sent independently of other filter entries. The data 
filter is commonly used with ANSI Page-based 
data. This content is extensible.

Flag values DoNotConflate and DoNotCache 
can optionally be set to true to prevent conflation 
and caching of this content.

Refer to.

SERVICE_LINK_ID

(SERVICE_LINK_FILTER)

Map Provides information about individual upstream 
sources that provide data for this service. This is 
primarily used by systems that aggregate sources 
(such as the ADH) for identification and load 
balancing, and is not required to be processed by 
a consumer application. This content is not 
extensible.

Refer to.

Table 23: Source Directory MapEntry Filter Entries  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 44
EMAC320UMRDM.180



Chapter 4    Source Directory Domain
4.3.1.1 Source Directory Info Filter Entry

The Info filter entry (SERVICE_INFO_FILTER, SERVICE_INFO_ID) conveys information that identifies a service and the 
content it can provide. This includes information about provided domain types (e.g., Market Price, Market By Order), available 
QoS, and the names of any dictionaries required to parse the published content.

The Info FilterEntry should be present when a service is first added, and should not be changed as long as the service 
remains in the list. If a FilterEntry element uses a default value, it is included in the element’s description.

ELEMENT NAME TYPE
RANGE/
EXAMPLE

DESCRIPTION

Name ASCII e.g., IDN_RDF Required. Specifies the service’s name. This will 
match the concrete service name or the service group 
name that is in the Map.Key.

Vendor ASCII e.g., Thomson 
Reuters

Specifies the name of the vendor that provides the data 
for this service.

IsSource UInt 0 | 1 Specifies whether the service aggregates content from 
multiple sources. Available values are:

• 0: The service aggregates multiple sources into a 
single service. This is the default behavior.

• 1: The service is provided directly by the original 
publisher

Capabilities Array of UInt e.g., [5, 6] Required. Lists the domains which this service can 
provide. Note that the UInt MesageModelType is 
extensible, using values defined in this guide (i.e., 1-
255).

For example, a list containing MMT_DICTIONARY (5) 
and MMT_MARKET_PRICE (6) indicates a consumer 
can request dictionaries and Market Price data from 
this service.

DictionariesProvided Array of ASCII e.g., RWFFld Lists the Dictionary names that this service can 
provide. A consumer can obtain these dictionaries by 
requesting them by name on the MMT_DICTIONARY 
domain.

For details, refer to Chapter 5, Dictionary Domain.

DictionariesUsed Array of ASCII e.g., RWFFld, 
RWFEnum

Conditional. Lists the Dictionary names that might be 
required to fully process data from this service. 
Whether or not the dictionary is required depends on 
the consumer’s needs. For example: if the consumer is 
not a display application, it might not need an 
Enumerated Types Dictionary.

For details, refer to Chapter 5, Dictionary Domain.

Table 24: Source Directory Info Filter Entry Elements  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 45
EMAC320UMRDM.180



Chapter 4    Source Directory Domain
QoS Array of QoS e.g., Real-time, 
TickByTick

Specifies the available Qualities of Service (QoS).

• If the data comes from one source, there will 
usually be only one QoS.

• If there are multiple sources, more than one QoS 
may be available.

The default QoS is Realtime, Tick-By-Tick. Thus. if a 
QoS is not provided, the Transport API assumes the 
service provides a QoS of Realtime, Tick-By-Tick.

For more information about QoS use and handling, 
refer to the Message API C++ Edition Developers 
Guide.

SupportsQoSRange UInt 0 | 1 Indicates whether the provider supports a QoS range 
when requesting an item.

If supported, a consumer can indicate an acceptable 
range via ReqMsg.Qos.

• 0: The provider does not support QoS range 
requests. This is the default behavior.

• 1: The provider supports QoS range requests.

ItemList ASCII Specifies the name of a SymbolList (i.e., a specific item 
requested to get the names of all items available for 
this service). If it is not present, this feature is not 
supported. The consumer requests this item via the 
MMT_SYMBOL_LIST domain (See Chapter 11, 
Symbol List Domain).

SupportsOutOfBandSnapshots UInt 0 | 1 Indicates whether Snapshot requests can still be made 
after reaching the OpenLimit (refer to Section 4.3.1.4).

• 0: Snapshot requests cannot be made if the 
OpenLimit is reached.

• 1: Snapshot requests can be made even when the 
OpenLimit is reached. This is the default behavior.

AcceptingConsumerStatus UInt 0 | 1 Indicates whether a service can accept and process 
messages related to Source Mirroring (refer to Section 
4.2.4).

• 0: The service cannot accept and process 
messages related to Source Mirroring.

• 1: The service can accept and process messages 
related to Source Mirroring. This is the default 
behavior.

ELEMENT NAME TYPE
RANGE/
EXAMPLE

DESCRIPTION

Table 24: Source Directory Info Filter Entry Elements (Continued)
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 46
EMAC320UMRDM.180



Chapter 4    Source Directory Domain
4.3.1.2 Source Directory State Filter Entry

The State filter entry (SERVICE_STATE_FILTER, SERVICE_STATE_ID) conveys information about the current state of a 
service. This information usually has some bearing on the availability of data from a service. If a service becomes temporarily 
unavailable or becomes available again, consumers are informed via updates to this category.

This category should be present in the initial refresh and updated as needed.

The Status element can change the state of items provided by this service. Prior to changing a service status, Thomson 
Reuters recommends that you issue item or group status messages to update item states.

Any default behavior is explained in the Element’s description.

ELEMENT NAME TYPE RANGE/EXAMPLE DESCRIPTION

ServiceState UInt 0 | 1 Required. Indicates whether the original provider of the data 
is available to respond to new requests. Changes to 
ServiceState do not affect streams that are already open.

Available values are:

• 0: Service is Down

• 1: Service is Up

Refer to.

AcceptingRequests UInt 0 | 1 Indicates whether the immediate provider can accept new 
requests and/or handle reissue requests on already open 
streams. Existing streams remain unaffected, however new 
requests may be rejected. AcceptingRequests defaults to 
1.

Available values are:

• 0: The provider cannot accept new requests on existing 
streams.

• 1: The provider can accept new requests on existing 
streams.

Refer to.

Status State e.g., OmmState.Open, 
OmmState.Ok, 
OmmState.None, “OK”

Specifies a status change to apply to all items provided by 
this service. It is equivalent to sending a StatusMsg for each 
item.

The streamState is only allowed to be OmmState.Open or 
OmmState.ClosedRecover.

This status only applies to item streams that have received a 
refresh or status of OPEN/OK.

Refer to.

Table 25: Source Directory State FilterEntry Elements  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 47
EMAC320UMRDM.180



Chapter 4    Source Directory Domain
4.3.1.3 Source Directory Group Filter Entry

The Group filter entry (SERVICE_GROUP_FILTER, SERVICE_GROUP_ID) conveys item group status and item group merge 
information. Every item stream is associated with an item group as defined by the ItemGroup provided with the item’s 
RefreshMsg or StatusMsg. If some kind of change impacts all items within the same group, only a single group status 
message need be provided. For more information on item group use and handling, see the Message API C++ Edition 
Developers Guide.

If multiple group FilterEntrys are received in a single FilterList, then they should be applied in the order in which they 
were received.

Any default behavior is explained in the Element’s description.

ELEMENT NAME TYPE RANGE/EXAMPLE DESCRIPTION

Group Buffer e.g., 1.26.102 Required. Specifies the ItemGroup with which this 
information is associated.

This is typically represented as a series of 2-byte unsigned 
integers (i.e., two-byte unsigned integers written directly next 
to each other in the buffer). The example provided in the 
RANGE / EXAMPLE column of this table shows such a 
series, with inserted dots to help indicate two-byte value. 
When encoded into a buffer, do not include these dots.

MergedToGroup Buffer e.g., 1.26.110 Changes all items whose group currently matches the 
Group element to the specified MergedToGroup.

Status State e.g., 
StreamState::OpenEnum,

DataState::OkEnum,

StatusCode::NoneEnum, 
“OK”

A status change to be applied to all items whose ItemGroup 
matches the Group element. It is equivalent to sending a 
StatusMsg to each item.

• The streamState is only allowed to be 
OmmState.Open or OmmState.ClosedRecover.

• If you need to convey group status text or code 
information without changing the data state, use the 
value DataState::NoChangeEnum.

• If present in the same message as a MergedToGroup 
element, this change should be applied before the 
merge.

This change only applies to item streams that have received 
a refresh or status with a state of OPEN/OK.

Refer to Section 4.4.4.2

Table 26: Source Directory Group FilterEntry Elements  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 48
EMAC320UMRDM.180



Chapter 4    Source Directory Domain
4.3.1.4 Source Directory Load Filter Entry

The Load filter entry (SERVICE_LOAD_FILTER, SERVICE_LOAD_ID) conveys information about the service’s workload. If 
multiple services can provide desired data, a consumer can use service workload information to help decide which to use. 
None of these elements are required, nor have a default value.

4.3.1.5 Source Directory Data Filter Entry

The Data filter entry (SERVICE_DATA_FILTER, SERVICE_DATA_ID) conveys information that should be applied to all items 
associated with the service. This is commonly used for services that provide ANSI Page-based data. These elements has do 
not have a default value.

ELEMENT NAME TYPE
RANGE/
EXAMPLE

DESCRIPTION

OpenLimit UInt 0 – MAXUINT Maximum number of streaming items that the client is allowed to 
open for this service.

If the service supports out-of-band snapshots, snapshot requests do 
not count against this limit (refer to Section 4.3.1.1).

OpenWindow UInt 0 - MAXUINT Maximum number of outstanding requests (i.e., requests for items not 
yet open) that the service will allow at any given time.

If OpenWindow is 0, the behavior is the same as setting 
AcceptingRequests to 0 and no open item request is accepted. 
The provider should not assume that the OpenWindow becomes 
effective immediately.

LoadFactor UInt 0-65,535 A number indicating the current workload on the source providing the 
data.

This number and the means of its calculation vary based on the 
system (i.e., bandwidth usage, CPU usage, number of clients, etc). 
The only requirements are that:

• The LoadFactor should be calculated the same way for all 
services in a system.

• A more heavily-loaded service should have a higher LoadFactor 
than one that is less loaded.

Table 27: Source Directory Load FilterEntry Elements  

ELEMENT NAME TYPE RANGE/EXAMPLE DESCRIPTION

Type UInt • Time(1)

• Alert (2)

• Headline (3)

• Status (4)

• Reserved values : 0 - 1023

Conditional. You must include Type when data is present. 
Explains the content of the Data.

Data Any Data Type Data that should be applied to all items from the service; 
commonly used for services providing ANSI Page-based data. 
The contents of this element should be applied as an update to 
every item open for this stream. After the data fans out, it does 
not need to be cached as part of the source directory.

Table 28: Source Directory Data FilterEntry Elements  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 49
EMAC320UMRDM.180



Chapter 4    Source Directory Domain
4.3.1.6 Source Directory Link Filter Entry

The Link filter entry (SERVICE_LINK_FILTER, SERVICE_LINK_ID) conveys information about the upstream sources that 
provide data to a service.

This information is represented as a Map, where each MapEntry represents one upstream source. The map entry key is the 
name associated with the communication link, and is of type ASCII. This name is scoped globally, and if multiple sources have 
the same name, they are assumed to be identical and the aggregating system will balance requests among them.

A typical consumer application can treat this entry as mainly informational. The consumer should use the State category to 
make programmatic decisions about service availability and status.

Any default behavior is explained in the Element’s description.

ELEMENT NAME TYPE RANGE/EXAMPLE DESCRIPTION

Type UInt 1 | 2 Indicates whether the upstream source is interactive or 
broadcast. This does not describe whether the service itself is 
interactive or broadcast.

• 1: The upstream source is interactive (this is the default).

• 2: The upstream source is a broadcast source.

LinkState UInt 0 | 1 Required. Indicates whether the upstream source is up or 
down

• 0: The upstream source is down.

• 1: The upstream source is up.

LinkCode UInt 0 - 3 Provides additional information about the upstream source.

• 0: None (this is the default)

• 1: Ok

• 2: RecoveryStarted

• 3: RecoveryCompleted

Text ASCII N/A Explains the LinkState and LinkCode. Text defaults to “”.

Table 29: Source Directory Link FilterEntry Map Contents  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 50
EMAC320UMRDM.180



Chapter 4    Source Directory Domain
4.3.2 Source Directory ConsumerStatus Generic Message Payload

The directory data structure for the ConsumerStatus message is a Map. Each MapEntry sends status to one service and is 
uniquely identified by ServiceId (its key). Each entry contains an ElementList with one ElementEntry that indicates how the 
provider is used. MapEntrys do not use permission data.

Figure 9.  Source Directory Generic Message Payload

Note: GenericMsg(s) are supported for the DIRECTORY RDM only for sending / receiving information related to 
ConsumerStatus/Source Mirroring Mode.

ELEMENT NAME TYPE RANGE/EXAMPLE DESCRIPTION

SourceMirroringMode UInt 0 - 2 Required. Indicates how the downstream component uses the 
service. There is no default setting. SourceMirroringMode 
can have any of the following values:

• 0: ActiveNoStandby. The downstream device uses the 
data from this service, and does not receive it from any 
other service.

• 1: ActiveWithStandby. The downstream device uses the 
data from this service, but also receives it from another 
service.

• 2: Standby. The downstream device receives data from 
this service, but actually uses data from another 
service.

A reply from the provider application is not needed 
because this is for informational use only.

Table 30: Source Directory Generic Message MapEntry Elements  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 51
EMAC320UMRDM.180



Chapter 4    Source Directory Domain
4.4 Special Semantics

4.4.1 Multiple Streams

Unlike other MessageModelTypes, two directory streams can be open with identical message key information. It is also 
permissible to change an open stream’s filter.

4.4.2 Service IDs

Most RDM messages can be associated with a service (although Login and Directory typically are not). For better bandwidth 
utilization, the RSSL transport optimizes the service name into a two byte service ID. The ServiceId is only unique within a 
single channel.

4.4.3 ServiceState and AcceptingRequests

The ServiceState and AcceptingRequests elements in the State filter entry work together to indicate the ability of a 
particular service to provide data:

• ServiceState indicates whether the source of the data is accepting requests.

• AcceptingRequests indicates whether the immediate upstream provider (the provider to which the consumer is 
directly connected) can accept new requests. If False, new requests are rejected while existing streams remain 
unaffected (reissue requests can still be made for any item streams that are currently open to the provider).

 Section 4.3.1.3The values of ServiceState and AcceptingRequests do not affect existing streams and do not imply anything 
about the data quality of existing streams.

SERVICESTATE ACCEPTINGREQUESTS MEANING

Up(1) Yes (1) New requests and reissue requests can be successfully processed.

Up(1) No (0) Although the source of data is available, the immediate provider is not 
accepting new requests. However, reissue requests on already open 
streams can be processed.

Down (0) Yes (1) The source of data is not available. The immediate provider, however, can 
accept the request and forward it when the source becomes available.

Down (0) No (0) Neither the source nor the immediate provider is accepting new requests.

Table 31: ServiceState and AcceptingRequests  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 52
EMAC320UMRDM.180



Chapter 4    Source Directory Domain
4.4.4 Service and Group Status Values

The Status elements in the State and Group FilterEntries are transient. Their values should be applied to all existing streams. 
The values should not be cached and should not affect any new requests.

4.4.4.1 Service Status

Providers can use a directory’s ServiceState.Status element to efficiently change the state of all of a service’s existing 
streams with a single message. The ServiceState.Status does not apply to requests that are currently pending a first refresh 
or status response (for details, refer to Section 2.3) message. EMA consumer implementation normally fans out state from the 
Status Element to all items associated with the service. When EMA does this, it will not forward this Element to the application. 
Instead, the application receives a StatusMsg for each item from the service. The other elements from the ServiceState 
FilterEntry will still be sent to the application.

4.4.4.2 Group Status

The Group FilterEntry can be used to efficiently change the state of a large number of items with a single message. The 
Group.Status does not apply to requests that are currently pending a first refresh or status response message. EMA 
consumer implementation normally fans out group messages to all items associated with the group. When EMA does this, it 
will not forward this FilterEntry to the application. Instead, the application will receive a StatusMsg for each item in the group.

4.4.5 Removing a Service

If a provider needs to remove a service from the list of known services, it should send the service’s MapEntry with the action 
set to MapEntry.Delete. A consumer should place all open items associated with this service in the 
OmmState.ClosedRecover.

All services associated with a Source Directory stream are removed if:

• The connection between the provider and consumer is closed or lost

• The provider sends a state of OmmState.Closed or OmmState.ClosedRecover on the Source Directory stream.

• The provider sends a message with a  ClearCache on a StatusMsg on the Source Directory stream.

If any of these events occurs, all of the items for the service(s) are automatically cleaned up and considered to have a 
ClosedRecover status.

Note: Though not best practice, some applications may continue to store service information, even after a service is removed. 
If this is the case, the application should advertise the service as Down and not accepting requests.
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 53
EMAC320UMRDM.180



Chapter 4    Source Directory Domain
4.4.6 Automatic Request from EMA Consumer

EMA internal consumer implementation will always automatically request a Directory with the Filter set to 
SERVICE_INFO_FILTER, SERVICE_STATE_FILTER, or SERVICE_GROUP_FILTER. This ensures that EMA can:

• Map service IDs to names

• Fanout SERVICE_STATE_ID.Status and SERVICE_GROUP_ID.Status

• Apply SERVICE_GROUP_ID.MergedToGroup

The Directory request is sent after the Login is successful. Response message for this directory request are not forwarded to 
the consumer application. If the consumer wants source directory information, it is required to make its own request for the 
Directory.

4.4.7 Client Requests Non-Existing Service Directory

If the client sends a directory request without specifying service name or service ID, the directory response includes all 
available services. If the client specifies a service name or service ID in a directory request, it receives the directory response 
for just the requested service. If the requested service name or service ID is not available, EMA should send a service 
directory containing an empty map entry in the payload. If the service becomes available later, the client receives an update 
message which contains the required service information.
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 54
EMAC320UMRDM.180



Chapter 5    Dictionary Domain
Chapter 5 Dictionary Domain

5.1 Description

OMM can optimize bandwidth usage by reducing or removing the need to constantly communicate well-known information 
(e.g., names and data types associated with information in a FieldList). Using these techniques, information is instead 
contained in a field dictionary, where the field list contains only FieldId references to information in the dictionary.

A provider application can indicate any dictionaries needed to parse published content. To reconstruct omitted information, 
consumer applications reference required dictionaries when decoding. Dictionaries may be available locally (i.e., in a file) or 
available for request over the network from an upstream provider.

The following dictionaries provide domain models for network requests:

• Field Dictionary: Stores data referenced by the FieldList. Each FieldId in a FieldEntry corresponds to an entry in 
the Field Dictionary, which provides information such as the field’s name (e.g., BID) and data type (e.g., Int). Additional 
information (such as rippling fields and expected cache-sizing requirements) are also present.

• Enumerated Types Dictionary: Contains tables defining values for enumerated values of type Enum. Each table 
indicates the FieldId values of all fields that use the data in the table, as well as the possible enumerated values. For 
example, a field indicating the currency of an item will use a table listing enumerations of various currencies. If a consumer 
decodes the value of that field (e.g., 840), it can cross reference that value with its copy of the table. The entry the 
consumer finds will contain a string that the consumer can print (e.g. USD), and possibly a more meaningful description as 
well.

Note: GenericMsg(s) are not supported for the Dictionary domain model.
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 55
EMAC320UMRDM.180



Chapter 5    Dictionary Domain
5.2 Decoding Field List Contents with Field and Enumerated Types Dictionaries

By itself, a FieldEntry contains only the FieldId and its associated encoded value in Data. Because the Elektron Message 
API internally stores pre-decoded data, an application can easily decode a FieldEntry (without cross-referencing the 
FieldId to the correct Field Dictionary to determine its type).

Figure 10.  FieldList Referencing Field Dictionary

If the field’s type is DataTypeEnum::EnumEnum, there may be a table of values in the corresponding Enumerated Types 
Dictionary. The consumer can then reference that information.

Figure 11.  FieldEntry Referencing an Enumerated Types Table
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 56
EMAC320UMRDM.180



Chapter 5    Dictionary Domain
The consumer, having decoded the enumerated value (e.g., 840), finds the correct table that defines the field and looks up the 
enumerated value in that table. The value will have a displayable string associated with it (e.g., USD).

5.3 Usage

5.3.1 Dictionary Request Message

A dictionary request message is encoded using ReqMsg and sent internally by the OmmConsumer in the constructor of this class. 
The request indicates the name of the desired dictionary and how much information from that dictionary is needed.

Users can configure dictionary request messages using OmmConsumerConfig.addAdminMsg() to override the default 
dictionary request.

Though updates are not sent on dictionary streams, Thomson Reuters recommends that the consumer make a streaming 
request (setting ReqMsg.InterestAfterRefresh to true) so that it is notified whenever the dictionary version changes.

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_DICTIONARY = 5

Interactions Required.

• InitialImage: true, Indicates an initial image is required.

• InterestAfterRefresh: true, Indicates a streaming request is required.

After receiving RefreshComplete, the consumer can only receive a Status response 
message. An Update response message will never be received. Pause request is not 
supported.

QoS Not used.

worstQos Not used.

priorityClass Not used.

priorityCount Not used.

Priority Optional.

extendedHeader Not used.

ServiceName Required. Specifies the ServiceName of the service from which the consumer requests the 
dictionary.

Note: The application should set either the ServiceName or ServiceId of the service, but not 
both.

ServiceId Required. Specifies the ServiceId of the service from which the consumer requests the 
dictionary.

Note: The application should set either the ServiceName or ServiceId of the service, but not 
both.

NameType Not used. 

Name Required. Specifies the Name of the desired dictionary as seen in the Source Directory 
response (refer to Section 4.3.1.1).

Table 32: Dictionary Request Message  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 57
EMAC320UMRDM.180



Chapter 5    Dictionary Domain
Filter Required. The filter represents the desired verbosity of the dictionary. The consumer should 
set the Filter according to how much information is needed:

• DICTIONARY_INFO = 0x00: Provides version information only.

• DICTIONARY_MINIMAL = 0x03: Provides information needed for caching.

• DICTIONARY_NORMAL = 0x07: Provides all information needed for decoding.

• DICTIONARY_VERBOSE = 0x0F: Provides all information (including comments).

Providers are not required to support the MINIMAL and VERBOSE filters.

For further details on Filter, refer to Section 5.4.1.

Identifier Not used.

Attrib Not used.

Payload Not used.

COMPONENT DESCRIPTION / VALUE

Table 32: Dictionary Request Message (Continued)
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 58
EMAC320UMRDM.180



Chapter 5    Dictionary Domain
5.3.2 Dictionary Refresh Message

A dictionary request message is encoded using ReqMsg and sent internally by the OmmConsumer in the constructor of this class. 
The request indicates the name of the desired dictionary and how much information from that dictionary is needed.

Users can configure dictionary request messages using OmmConsumerConfig.addAdminMsg() to override the default 
dictionary request.

Though updates are not sent on dictionary streams, Thomson Reuters recommends that the consumer make a streaming 
request (setting ReqMsg.InterestAfterRefresh to true) so that it is notified whenever the dictionary version changes.

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_DICTIONARY = 5

Interactions Required.

• InitialImage: true, Indicates an initial image is required.

• InterestAfterRefresh: true, Indicates a streaming request is required.

After receiving RefreshComplete, the consumer can only receive a Status response 
message. An Update response message will never be received. Pause request is not 
supported.

QoS Not used.

worstQos Not used.

priorityClass Not used.

priorityCount Not used.

Priority Optional.

extendedHeader Not used.

ServiceName Required. Specifies the ServiceName of the service from which the consumer requests the 
dictionary.

Note: The application should set either the ServiceName or ServiceId of the service, but not 
both.

ServiceId Required. Specifies the ServiceId of the service from which the consumer requests the 
dictionary.

Note: The application should set either the ServiceName or ServiceId of the service, but not 
both.

NameType Not used. 

Name Required. Specifies the Name of the desired dictionary as seen in the Source Directory 
response (refer to Section 4.3.1.1).

Table 33: Dictionary Request Message  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 59
EMAC320UMRDM.180



Chapter 5    Dictionary Domain
Filter Required. The filter represents the desired verbosity of the dictionary. The consumer should 
set the Filter according to how much information is needed:

• DICTIONARY_INFO = 0x00: Provides version information only.

• DICTIONARY_MINIMAL = 0x03: Provides information needed for caching.

• DICTIONARY_NORMAL = 0x07: Provides all information needed for decoding.

• DICTIONARY_VERBOSE = 0x0F: Provides all information (including comments).

Providers are not required to support the MINIMAL and VERBOSE filters.

For further details on Filter, refer to Section 5.4.1.

Identifier Not used.

Attrib Not used.

Payload Not used.

COMPONENT DESCRIPTION / VALUE

Table 33: Dictionary Request Message (Continued)
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 60
EMAC320UMRDM.180



Chapter 5    Dictionary Domain
5.3.3 Dictionary Status Message

A dictionary status message is encoded using StatusMsg and sent by OMM Interactive and non-interactive provider 
applications. This message can indicate changes to a dictionary’s version.

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_DICTIONARY = 5

State Optional. Contains stream and data state information for the dictionary stream.

ItemGroup Not used.

Indications Optional: 

• ClearCache: true, Indicates the application should clear the cache

PermissionData Conditional. Used if the provided dictionary requires permissioning.

extendedHeader Not used.

ServiceId Not used. 

NameType Not used.

Name Not used. 

Filter Not used.

Identifier Not used.

Attrib Not used.

Payload Not used.

Table 34: Dictionary Status Message  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 61
EMAC320UMRDM.180



Chapter 5    Dictionary Domain
5.4 Data

5.4.1 Filter

While Dictionary’s Filters values correlate to a bitmap, the Elektron Message API supports only the combinations in the 
following table. For example, a Dictionary’s Filter cannot be 0x2 or 0x6.

Dictionary providers are required to support DICTIONARY_INFO and DICTIONARY_NORMAL filers. Filter can be changed 
for Directory and Dictionary domain message models as part of a reissue. It cannot be changed in other domain message 
models. If an unsupported Filter is requested, the provider may do either of the following:

• Change the Filter in response message to a supported one.

• Send a Closed State in the response message.

MASK
PROVIDER MUST SUPPORT 

IN RESPONSE MESSAGE
DESCRIPTION

DICTIONARY_INFO=0x0 Yes Dictionary summary information, such as DictionaryType 
and version. The response Payload.SummaryData will 
contain data but the response payload will contain no 
entries.

DICTIONARY_MINIMAL=0x3 No DICTIONARY_INFO plus the minimum data needed to 
cache or convert data.

DICTIONARY_NORMAL=0x7 Yes DICTIONARY_MINIMAL plus all other data, except 
descriptions and comments.

DICTIONARY_VERBOSE=0xF No All available data.

Table 35: Dictionary's Filter  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 62
EMAC320UMRDM.180



Chapter 5    Dictionary Domain
5.4.2 Refresh Message Summary Data

A dictionary’s SummaryData is an ElementList that can be used by a consumer to find out if it needs an updated dictionary or 
if it needs the dictionary at all. SummaryData is extensible and can include other elements.

5.4.3 Response Message Payload

The Response Message (refer to Section 2.3) payload can vary widely, based on its DictionaryType. The payload is typically a 
Series of ElementLists, but can also be XML or Opaque data. For further details on the response message payloads, refer to 
Section 5.5.1 and Section 5.6.1.

Some DictionaryTypes also have external file representations of their data. For details about the data of each DictionaryType, 
refer to Section 5.5.2 and Section 5.6.2.

NAME TYPE RANGE/EXAMPLE DESCRIPTION

Version ASCII “1.0.1” Required. Specifies the version of 
the provided dictionary.

For additional details on dictionary 
versions, refer to Section 5.7.2.

Note: The Enumerated Types 
dictionaries populate the Version 
element using information from 
the DT_Version tag.

Type UInt Total range is from 0 to 255, where values 0 - 127 are 
reserved and values 28-255 are extensible.

• DICTIONARY_FIELD_DEFINITIONS = 1

• DICTIONARY_ENUM_TABLES = 2

• DICTIONARY_RECORD_TEMPLATES = 3

• DICTIONARY_DISPLAY_TEMPLATES = 4

• DICTIONARY_DATA_DEFINITIONS = 5

• DICTIONARY_STYLE_SHEET = 6

• DICTIONARY_REFERENCE = 7

Required. Indicates the type of 
dictionary contained in the payload.

DictionaryId Int Total range is from -16383 to 16383, where:

• Values 0 to 16383 are reserved by Thomson 
Reuters

• The value 1 corresponds to the 
RDMFieldDictionary.

• The value 0 signifies ‘Unspecified’

• Values -1 to -16383 are Extensible

EMA can use DictionaryId in field 
lists and series to associate fields 
with field definitions or 
enumerations. Refer to Section 
5.4.4.

DictionaryId defaults to 0.

RT_Version ASCII “1.0.1” Optionally sent only with the 
enumerated type dictionary. 
RT_Version identifies which field 
dictionary should be used with this 
enumerated type dictionary. 

DT_Version ASCII “1.0.1” Optionally sent only with the 
enumerated type dictionary. 
DT_Version conveys the display 
template version. 

Table 36: Dictionary summaryData  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 63
EMAC320UMRDM.180



Chapter 5    Dictionary Domain
5.4.4 DictionaryId

The first FieldList provided for an item always has a DictionaryId. While a FieldList can be parsed without a Dictionary, to 
interpret the data, the FieldList’s DictionaryId must be associated with a Dictionary. The DictionaryId (provided in a 
Dictionary response message’s Payload.SummaryData) associates a FieldList’s DictionaryId to a “family” of Dictionaries.

A Dictionary family includes a single FieldDefinition Dictionary. Enumeration tables for a single FieldDefinition Dictionary must 
be consolidated into a single EnumTable Dictionary that has the same DictionaryId as the FieldDefinition Dictionary. The 
Dictionary family may also include a single RecordTemplate Dictionary and a single DisplayTemplate Dictionary.

The DictionaryId is 0 for StyleSheet and Reference. A DictionaryId setting of 0 means unspecified, so the Dictionary is not 
used for parsing, interpreting, or displaying FieldLists. For example, a “TimeZone” reference dictionary may include table 
information about every world time zone. Because timezone information is not needed to parse FieldLists, there is no need 
to assign a DictionaryId to the “TimeZone” Dictionary. Thus, the value of its DictionaryId is set to 0 (i.e., unspecified).

DictionaryIds are globally scoped can have the range of -16383 to 16383. Though DictionaryIds 0 through 16383 are 
reserved for use by Thomson Reuters, applications can provide their own dictionaries by selecting a DictionaryId between -1 
and -16383. If a single FieldList needs to use fields defined in two dictionaries, the FieldList can specify a dictionary 
switch using 0 for the Field ID. For details, refer to the Message API C++ Edition Developers Guide.
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 64
EMAC320UMRDM.180



Chapter 5    Dictionary Domain
5.5 Field Dictionary

5.5.1 Field Dictionary Payload

The payload of a Field Dictionary Refresh Message consists of a Series where each series entries contains a ElementList. 
Each SeriesEntry represents a row of information in the dictionary. The ElementList contained in each series entry provides 
information about an element of the row.

Figure 12.  Field Dictionary Payload
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 65
EMAC320UMRDM.180



Chapter 5    Dictionary Domain
Element entries do not have default values.

NAME TYPE
LEAST 
VERBOSITY

RANGE/EXAMPLE DESCRIPTION

NAME ASCII MINIMAL e.g., “PROD_PERM” Equivalent to the field’s ACRONYM 
(i.e., Short Name).

FID Int MINIMAL -32768 to 32767 The field’s FieldId.

RIPPLETO Int MINIMAL -32768 to 32767 If the field ripples, this is the FieldId 
of the field it ripples to.

A value of 0 indicates no rippling.

For a description of rippling, refer to the 
Message API C++ Edition 
Developers Guide.

TYPEa

a. These elements are specific to the Marketfeed format and can be used in converting to or from it. They can otherwise be ignored.

Int MINIMAL e.g., INTEGER The data type of the field for the 
Marketfeed format.

LENGTHa UInt MINIMAL 0 to 65535 The maximum string length of the field 
for the Marketfeed format.

RWFTYPE UInt MINIMAL e.g., Int The data type (DataType) of the field.

RWFLEN UInt MINIMAL 0 to 65535 The maximum length needed to cache 
the encoded value (the value found in 
the FieldEntry’s encData buffer). 
This is only a suggestion and is not 
enforced.

A length of 0 implies that the maximum 
possible size for that type should be 
used for caching.

ENUMLENGTH UInt NORMAL 0 to 65535 Used for fields of type Enum. This is 
the length of the DISPLAY element in 
its Enumerated Types table (See 
Section 5.6.1).

LONGNAME ASCII NORMAL e.g., “PERMISSION” Equivalent to the field’s DDE 
ACRONYM (i.e., Long Name).

Table 37: Field Dictionary Element Entries  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 66
EMAC320UMRDM.180



Chapter 5    Dictionary Domain
5.5.2 Field Dictionary File Format

The RDMFieldDictionary file format is a plain-text table. Each row represents one field, and each column a datum about that 
field. Each row is separated with a line break and columns are separated by whitespace. Lines beginning with an exclamation 
point (!) are comments and are ignored.

Figure 13.  Field Dictionary File Format Sample

Several tagged attributes are available at the beginning of the file. These attributes provide versioning information about the 
dictionary in the file and are processed when loading from a file-based dictionary. Some of this information is conveyed along 
with the domain model representation of the dictionary. Tags may be added as future dictionary versions become available.

For the RDMFieldDictionary, an example of these tags are shown below.

Figure 14.  Field Dictionary Tagged Attributes Sample

!ACRONYM    DDE ACRONYM      FID  RIPPLES TO  FIELD TYPE    LENGTH   RWF TYPE         RWF LEN
PROD_PERM   "PERMISSION"      1    NULL        INTEGER       5        UINT64           2

RDNDISPLAY  "DISPLAYTEMPLATE" 2    NULL        INTEGER       3        UINT32           1

DSPLY_NAME  "DISPLAY NAME"    3    NULL        ALPHANUMERIC  16       RMTES_STRING     16

RDN_EXCHID  "IDN EXCHANGE ID" 4    NULL        ENUMERATED    3 ( 3 )  ENUM             1

TIMACT      "TIME OF UPDATE"  5    NULL        TIME          5        TIME             5

TRDPRC_1    "LAST  "          6    TRDPRC_2    PRICE         17       REAL64           7

TRDPRC_2    "LAST 1"          7    TRDPRC_3    PRICE         17       REAL64           7

TRDPRC_3    "LAST 2"          8    TRDPRC_4    PRICE         17       REAL64           7

TRDPRC_4    "LAST 3"          9    TRDPRC_5    PRICE         17       REAL64           7

TRDPRC_5    "LAST 4"          10   NULL        PRICE         17       REAL64           7

!tag Filename      RWF.DAT

!tag Desc          RDFD RWF field set

!tag Type          1

!tag Version       4.00.14

!tag Build         002

!tag Date          18-Nov-2010
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 67
EMAC320UMRDM.180



Chapter 5    Dictionary Domain
5.5.2.1 Field Dictionary Tag Attributes

The following table describes tag attributes and indicates whether they are used when encoding the domain representation of 
the file.

5.5.2.2 Field Dictionary Columns

The columns in the field dictionary correspond to the ElementEntry names used while encoding and decoding the Field 
Dictionary:

TAG ATTRIBUTE DESCRIPTION

Filename The original name of the file as created by Thomson Reuters. This typically will not match the 
current name of the file, RDMFieldDictionary.

Filename is not used when encoding the domain representation of the field dictionary.

Desc Describes the dictionary.

Desc is not used when encoding the domain representation of the field dictionary.

Type Stores the dictionary type associated with this dictionary. For a field dictionary, this should be 
DICTIONARY_FIELD_DEFINITIONS = 1. Other types are defined in Section 5.4.

Type is used when encoding the domain representation of the field dictionary.

Version Stores version information associated with this dictionary.

Version is used when encoding the domain representation of the field dictionary. 

Build Stores internal build information.

Build is not used when encoding the domain representation of the field dictionary.

Date Stores dictionary release date information.

Date is not used when encoding the domain representation of the field dictionary.

Table 38: Field Dictionary File Tag Information  

COLUMN NAME IN FILE RWF ELEMENT NAME NOTES

ACRONYM NAME The abbreviated name corresponding to the field.

DDE ACRONYM LONGNAME A longer version of the name represented by the Acronym.

FID FID The Field Identifier value.

RIPPLES TO RIPPLETO The file format uses the ACRONYM of the target field, rather than 
the rows FieldId.

If the field does not ripple, this should be NULL.

FIELD TYPE TYPE The Marketfeed type associated with this field.

LENGTH LENGTH (ENUMLENGTH) The Marketfeed length associated with the field.

RWF TYPE RWFTYPE The RWF type (DataType) associated with the field.

RWF LEN RWFLEN A caching length hint associated with this field.

Table 39: Field Dictionary File Column Names and ElementEntry Names  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 68
EMAC320UMRDM.180



Chapter 5    Dictionary Domain
5.5.2.3 RWF TYPE Keywords

The following keywords are supported for the RWF TYPE:

KEYWORD DATA TYPE

ANSI_PAGEa ANSI_Page

ARRAYa Array

ASCII_STRING ASCII

BUFFER Buffer

DATE Date

DATETIMEa DateTime

DOUBLEa

a. Type is RWF-Only and does not have a Marketfeed equivalent.

Double

ELEMENT_LIST, ELEM_LISTa ElementList

ENUM Enum

FIELD_LISTa FieldList

FILTER_LISTa FilterList

FLOATa Float

INT, INT32, INT64 Int

MAPa Map

OPAQUE Opaque

QOSa QoS

REAL, REAL32, REAL64 Real

RMTES_STRING RMTES

SERIESa Series

STATUSa Stream

TIME Time

UINT, UINT32, UINT64 UInt

UTF8_STRING UTF8

VECTORa Vector

XMLa XML

Table 40: Field Dictionary Type Keywords  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 69
EMAC320UMRDM.180



Chapter 5    Dictionary Domain
5.5.2.4 FIELD TYPE Keywords

The RDMFieldDictionary’s RWFTYPE and RWFLEN are derived from the field dictionaries used in Marketfeed. Valid keywords 
for the Marketfeed Field Type are INTEGER, ALPHANUMERIC, ENUMERATED, TIME, TIME_SECONDS, DATE, or PRICE.

Thee following RWF types and values help ensure that data is not truncated when converted from Marketfeed to RWF. If 
converting RWF to Marketfeed, the OMM Provider application should ensure that the RWF data does not overflow the 
Marketfeed length.

For ALPHANUMERIC types, if the data does not require RMTES, then the ASCII_STRING type should be used instead of the 
RMTES_STRING type.

Fields that cannot be converted to Marketfeed should have the Marketfeed type NONE and length 0.

The table below lists the mappings from FIELD TYPE to the RWF TYPE keyword. All are used in RDMFieldDictionary and 
are safe.

FIELD TYPE LENGTH RWF TYPE RWF LEN NOTES

ALPHANUMERIC 14 ASCII_STRING 14 RIC/SYMBOL

ALPHANUMERIC 21 ASCII_STRING 21 RIC/SYMBOL

ALPHANUMERIC 28 ASCII_STRING 28 RIC/SYMBOL

ALPHANUMERIC 1-255 RMTES_STRING 1-255 length <= 3 is technically ASCII

ENUMERATED 2-3 (1-8) ENUM 1 Enum values 0 - 255

ENUMERATED 5 (3-8) ENUM 2 Enum values 0 - 65535

BINARY 3 UINT32 2 Base64 encoded 2-byte unsigned int

BINARY 4 UINT32 3 Base64 encoded 3-byte unsigned int

BINARY 43 BUFFER 32 Base64 encoded buffer

BINARY 171 BUFFER 128 Base64 encoded buffer

DATE 11 DATE 4 Day, month, year

TIME_SECONDS 8 TIME 5 Time in hour, minute, second, and millisecond

TIME 5 TIME 5 Time in hour, minute, and second

PRICE 17 REAL 9 Real can represent values with fractional 
denominators, trailing zeros, or up to 14 decimal 
positions. 

INTEGER 15 REAL 7 Signed integer value, where trailing zero values can 
be optimized off of the wire. 

INTEGER 3 UINT 1 unsigned int 0 - 255

INTEGER 5 UINT 2 unsigned int 0 - 65535

INTEGER 10 UINT 5 unsigned int 0 - (240-1)

INTEGER 15 UINT 8 unsigned int 0 - (264-1)

INTEGER 15 UINT 4 unsigned int 0 - (232-1)

Table 41: Marketfeed to RWF Mappings in RDMFieldDictionary  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 70
EMAC320UMRDM.180



Chapter 5    Dictionary Domain
5.5.2.5 Custom FIDs

There are a couple of recommendations for custom FIDs:

5.5.3 Specific Usage: RDF Direct and FieldDefinition Dictionary

The FieldDefinition Dictionary provided by RDF Direct is named “RWFFld”. It has a DictionaryId of 1.

All DataMasks are supported. DictionaryVerbose will return the same data as DictionaryNormal.

The response Payload.SummaryData includes Version, Type, and DictionaryId.

The RWFFld dictionary only uses the following types: INT32, INT64, INT, UINT32, UINT64, UINT, REAL32, REAL64, REAL, 
DATE, TIME, ENUM, BUFFER, ASCII_STRING, RMTES_STRING.

FIELD TYPE LENGTH RWF TYPE RWF LEN NOTES

PRICE 17 REAL 9 Real can represent values with fractional 
denominators, trailing zeros, or up to 14 decimal 
positions. 

INTEGER 15 INT 8 Signed integer value that has one sign bit and 63 
value bits. 

Table 42: Marketfeed to RWF Mappings in RDMFieldDictionary  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 71
EMAC320UMRDM.180



Chapter 5    Dictionary Domain
5.6 Enumerated Types Dictionary

5.6.1 Enumerated Types Dictionary Payload

The payload of an Enumerated Types Dictionary Refresh Message consists of a Series with each series entry (SeriesEntry) 
containing an ElementList and representing a table in the dictionary. The ElementList in each entry contains information 
about each Enumerated Type in the table.

Each ElementEntry has a type of Array, where there is one element for each column in the file: VALUE, DISPLAY, and 
MEANING. The content of each Array corresponds to one Enumerated Type, so each array should contain the same number 
of entries.

Figure 15.  Enumerated Types Dictionary Refresh Message Payload
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 72
EMAC320UMRDM.180



Chapter 5    Dictionary Domain
NAME TYPE
LEAST 
VERBOSITY

EXAMPLE 
LIST

DESCRIPTION

FIDS Array of Int NORMAL 15, 1084, 
1085,…

The FieldId’s of all fields that reference this 
table. These fields should have type Enum in 
the Field Dictionary and use the values given in 
the VALUE list. The OmmArray.FixedWidth 
should be 2 because each FieldId is a two-
byte, signed integer value. 

VALUE Array of Enum NORMAL 826, 840, … Includes values that correspond to each 
Enumerated Type. FieldEntries that use the 
table contain these values. The 
OmmArray.FixedWidth should be 2 since each 
enum is a two-byte, unsigned integer value. 

DISPLAY Array of StringASCII, 
StringRMTES, or StringUTF8

NORMAL “GBP”, 
“USD”,…

Brief, displayable names for each Enumerated 
Type.

When special characters are needed, the 
DISPLAY column uses a hexadecimal value 
identified by using hash marks instead of 
quotation marks (e.g., #42FE#).

MEANING Array of ASCII VERBOSE “UK pound 
sterling”, “US 
Dollar”,…

A longer description of each Enumerated Type.

Note: Providers do not need to provide this 
array (even when verbosity is VERBOSE).

Table 43: Element Entries Describing Each Enumerated Type Table  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 73
EMAC320UMRDM.180



Chapter 5    Dictionary Domain
5.6.2 Enumerated Types Dictionary File Format

The enumtype.def file format is a plain-text set of tables. Rows are separated by lines and columns are separated by 
whitespace (excepting quoted strings, as illustrated in Section 5.6.1). Lines that begin with an exclamation point (!) are 
comments and are ignored.

The file contains a set of tables, each with two sections: 

1. A section with the list of FieldId values corresponding to all fields that use the table.

2. A section with the table of enumerated values and their respective display data.

5.6.2.1 Enumerated Types Dictionary File Example

Code Example 1: Enumerated Types Dictionary File Format Sample

! ACRONYM    FID

! -------    ---

BIG_FIGURE   6207

PIPS_POS     6208

! VALUE      DISPLAY   MEANING

! -----      -------   -------

    0        "INT"     whole number

    1        "1DP"     1 decimal place

    2        "2DP"     2 decimal places

    3        "3DP"     3 decimal places

    4        "4DP"     4 decimal places

    5        "5DP"     5 decimal places

    6        "6DP"     6 decimal places

    7        "7DP"     7 decimal places

!

! ACRONYM     FID

! -------     ---

MATUR_UNIT    2378

!

! VALUE      DISPLAY   MEANING

! -----      -------   -------

    0        "   "   Undefined

    1        "Yr "   Years

    2        "Mth"   Months

    3        "Wk "   Weeks

    4        "Day"   Days
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 74
EMAC320UMRDM.180



Chapter 5    Dictionary Domain
5.6.2.2 Tagged Attributes

Several tagged attributes are available at the beginning of the file. These attributes provide version information about the 
dictionary contained in the file and are processed while loading from a file-based dictionary. Some of this information is 
conveyed along with the domain model representation of the dictionary. Tags may be added as future dictionary versions 
become available.

For the enumtype.def, an example of these tags are as follows:

Code Example 2: Enumerated Types Dictionary Tagged Attribute Sample

The following table describes the tag attributes and indicates which are used when encoding the domain representation of the 
file.

!tag Filename      ENUMTYPE.001

!tag Desc          IDN Marketstream enumerated tables

!tag Type          2

!tag RT_Version    4.20.17

!tag DT_Version    15.41

!tag Date          5-Feb-2017

TAG ATTRIBUTE DESCRIPTION

Date Includes information regarding the dictionary release date.

Date is not used when encoding the domain representation of the field dictionary. 

Desc A Description of the dictionary.

Desc is not used when encoding the domain representation of the field dictionary. 

DT_Version The version of the display template version.

DT_Version is used when encoding the domain representation of the field dictionary. For device 
compatibility purposes, this value is sent as both Version and DT_Version.

Filename The original name of the file as created by Thomson Reuters. This typically does not match the 
current name of the file, enumtype.def.

Filename not used when encoding the domain representation of the field dictionary.

RT_Version The version of the field dictionary associated with this enumerated type dictionary.

RT_Version is used when encoding the domain representation of the field dictionary.

Type The dictionary type associated with this dictionary. For an enumerated types dictionary, this should 
be DICTIONARY_ENUM_TABLES = 2. Other types are defined in Section 5.4.

Type is used when encoding the domain representation of the field dictionary.

Table 44: Enumerated Type Dictionary File Tag Information  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 75
EMAC320UMRDM.180



Chapter 5    Dictionary Domain
5.6.2.3 Reference Fields Section

The first section lists all fields that use the table. These fields should have the type Enum in their corresponding Field 
Dictionary and have matching names.

5.6.2.4 Values Table Section

The second section lists the value of each enumerated type and its corresponding display data.

5.6.3 Specific Usage: RDF Direct and EnumTable Dictionary

The RDF Direct EnumTable Dictionary uses the name “RWFEnum”. It has a DictionaryId of 1 to match the RWFFld 
Dictionary.

RDF Direct uses the standard file representation described in Section 5.5.2. The file does not include a DictionaryId or a 
Version number, so most existing enumtype.def parsers can parse the RWF FieldDictionary file without changes.

NAME RWF ELEMENT NAME

ACRONYM n/a (The name of the field is not sent with the dictionary payload).

FID FIDS

Table 45: RWF EnumType Dictionary File Format Reference Fields  

NAME RWF ELEMENT NAME NOTES

VALUE VALUE The unsigned, integer value corresponding to the enumerated value. 

DISPLAY DISPLAY Quoted alphanumeric for the expanded string value.

In cases where special characters are needed, the DISPLAY column uses a 
hexadecimal value, which is identified by using hash marks instead of quotation 
marks, e.g. #42FE#.

MEANING MEANING The meaning column is not required over the network and typically not provided.

Table 46: RWF EnumType Dictionary File Values  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 76
EMAC320UMRDM.180



Chapter 5    Dictionary Domain
5.7 Special Semantics

5.7.1 DictionariesProvided and DictionariesUsed

The Directory’s DirectoryInfo FilterEntry (refer to Section 4.3.1.1) includes two elements related to Dictionaries: 
DictionariesProvided and DictionariesUsed. Both elements contain an Array of ASCII dictionary names. These names can 
be used in Name to request the dictionaries.

 To dynamically discover dictionaries while minimizing the amount of data downloaded:

1. Parse the “DictionariesUsed” from each desired service in the Directory.

2. Parse the “DictionariesProvided” from every service in the Directory.

3. Make a streaming request for each Dictionary Name listed in DictionariesUsed from the service that lists the 
DictionaryName in DictionariesProvided. The Filter of each ReqMsg should be set to DICTIONARY_INFO so as to 
request only the dictionary’s basic information (because dictionaries tend to be large, this setting prevents unnecessary 
network traffic).

4. For each Dictionary response, parse the summaryData in the payload to obtain the dictionary’s Type and Version.

• If a dictionary is of an unneeded type, that dictionary stream can be closed.

• If a dictionary is needed, a reissue request can be made where the Filter requests a higher verbosity (e.g. 
DICTIONARY_NORMAL).

• Version information can be used to determine if the consumer needs to update its dictionary.

5.7.2 Version Information

The version of a dictionary is normally available in Summary Data in the payload of a RefreshMsg. All available verbosities are 
expected to include this information. The verbosity DICTIONARY_INFO can be used to request only the version information 
(as the many fields in dictionaries tend to result in large messages).

This information normally comes in the form of a ASCII containing a dotted-decimal version number, indicating first the major 
version, followed by the minor version, and possibly followed by a third (informational) micro-version. For example, in the string 
1.2.3:

• 1 is the major version

• 2 is the minor version

• 3 is the micro-version

5.7.2.1 Version Information Usage

Version information has a couple of uses:

• The minor version changes whenever a dictionary adds new fields, but does not modify existing fields. This means 
the consumer can still use the previous dictionary with its data (though the consumer is unable to decode any new 
fields). Also, if the consumer has multiple dictionaries with the same major version available, it can use the minor 
version information to determine which is the latest (and therefore will be able to decode all fields regardless of the 
data’s source).

• The major version changes if the dictionary changes in a way that is not compatible with previous versions (such as 
changing an existing field). This means that data encoded using a dictionary with one major version cannot be 
decoded using a dictionary with a different major version. If a consumer learns that its provider has changed to a 
dictionary with a different major version, it must retrieve the new dictionary before again decoding data.
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 77
EMAC320UMRDM.180



Chapter 5    Dictionary Domain
5.7.2.2 Handling Dictionary Version Changes

To keep consumers informed of changes, Thomson Reuters recommends that dictionary requests be streaming even though 
updates are not used for this domain.

If the dictionary’s minor version changes, a provider may advertise it via a StatusMsg with a State of OmmState.Open/
OmmState.Suspect. The consumer may then reissue its dictionary request to obtain the latest version.

If a dictionary’s major version is changed, the provider should disconnect all consumers to ensure that the consumers’ content 
and dictionary are entirely resynchronized.

5.8 Other Dictionary Types

The Dictionary domain is intended to be used for other versionable data that updates very rarely. This section briefly describes 
the other reserved dictionary types.

None of these dictionary types are currently used, nor is there any domain model specification associated with any of them at 
this time.

5.9 Specific Usage: Enterprise Platform

The Enterprise Platform currently supports only a single DictionaryId’s family. If the provider doesn’t specify it then it is 
interpreted to be 1.

DICTIONARY TYPE DESCRIPTION

DisplayTemplate A DisplayTemplate dictionary contains specifications that describe how and where to 
display fields on a screen.

DataDefinition A DataDefinition dictionary contains specifications for ElementListDefs and 
FieldListDefs that can be used for decoding FieldLists and ElementLists that have been 
optimized with SetDefinitions. 

StyleSheet A StyleSheet dictionary contains an XSLT or CSS style sheet.

Reference A Reference dictionary is a table of reference information provided as a Series. This 
information is not used for parsing, interpreting, caching, or displaying data.

Table 47: Other Dictionary Types  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 78
EMAC320UMRDM.180



Chapter 6    Market Price Domain
Chapter 6 Market Price Domain

6.1 Description

The Market Price domain provides access to Level I market information such as trades, indicative quotes, and top-of-book 
quotes. All information is sent as a FieldList. Field-value pairs contained in the field list include information related to that 
item (i.e., net change, bid, ask, volume, high, low, or last price).

6.2 Usage

6.2.1 Market Price Request Message

A Market Price request message is encoded using ReqMsg and sent by OMM consumer applications. The request specifies the 
name and attributes of an item in which the consumer is interested.

To receive updates, a consumer can make a “streaming” request by setting ReqMsg.InterestAfterRefresh to true. If the 
method is not set, the consumer requests a “snapshot,” and the refresh ends the request (though updates might be received in 
either case if the refresh has multiple parts).

To stop updates, a consumer can pause an item (if the provider supports the pause feature). For additional details, refer to the 
Message API C++ Edition Developers Guide.

Note: GenericMsg(s) are not supported in the MMT_MARKET_PRICE Reuters Domain Model.

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_MARKET_PRICE = 6

Interactions Required.

• InitialImage: true, indicates that an initial image is required.

• InterestAfterRefresh: true, indicates that a streaming request is required.

• Pause: true, indicates that a pause is required.

Indications Optional.

ConflatedInUpdates: true, indicates conflated updates is required

Batch and View request are specified in the Payload.

QoS Optional. Indicates the QoS at which the consumer wants the stream serviced. If both QoS and 
worstQos are specified, this request can be satisfied by a range of QoS.

worstQos Optional. Used with the QoS member to define a range of acceptable QoS. When the provider 
encounters such a range, it should attempt to provide the best QoS it can within that range.

worstQos should only be used on services that claim to support it via the SupportsQosRange 
item in the Source Directory response (refer to  Section 4.3.1.1).

Priority Optional. Indicates the class and count associated with stream priority.

extendedHeader Not used.

Table 48: Market Price Request Message  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 79
EMAC320UMRDM.180



Chapter 6    Market Price Domain
ServiceId Required. Specifies the ID of the service from which the consumer wishes to request the item.

Note: The application should set either the ServiceName or ServiceId of the service, but not 
both.

NameType Optional. When consuming from Thomson Reuters sources, typically set to 
INSTRUMENT_NAME_RIC = 1 (the “Reuters Instrument Code”). If unspecified, NameType 
defaults to INSTRUMENT_NAME_RIC = 1.

Name Required. Specifies the name of the requested item.

Note: Not used for Batch Item request.

ServiceName Required. Specifies the name of the service from which the consumer wishes to request the 
item.

Note: The application should set either the ServiceName or ServiceId of the service, but not 
both.

Filter Not used.

Identifier Not used.

Attrib Not used.

Payload Optional. When features such as View or Batch are leveraged, the payload can contain 
information relevant to that feature. For more detailed information, refer to the Appendix A.

COMPONENT DESCRIPTION / VALUE

Table 48: Market Price Request Message (Continued)
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 80
EMAC320UMRDM.180



Chapter 6    Market Price Domain
6.2.2 Market Price Refresh Message

A Market Price Refresh Message is encoded using RefreshMsg and sent by OMM provider and OMM non-interactive provider 
applications. This message sends all currently available information about the item to the consumer.

FieldList in the payload should include all fields that may be present in subsequent updates, even if those fields are 
currently blank. When responding to a View request, this refresh should contain all fields that were requested by the specified 
view. If for any reason the provider wishes to send new fields, it must first send an unsolicited refresh with both the new and 
currently-present fields.

Note: All solicited or unsolicited refresh messages in the Market Price domain must be atomic. The Market Price domain does 
not allow for multi-part refresh use. The provider should only send the Name and ServiceName in the first Refresh response 
message. However if MsgKeyInUpdates is set to true, then the Name and ServiceName must be provided for every Refresh 
response messages.

COMPONENT DESCRIPTION / VALUE

MessageModelType Required. MMT_MARKET_PRICE = 6

State Required. Includes the state of the stream and data.

Solicited Required. Indicates whether the refresh was solicited. Possible settings are:

• true: The refresh was solicited.

• false: The refresh was unsolicited.

Indications Required. Available settings include:

• Complete: true, Indicates that the refresh is complete.

• DoNotCache: true, Indicates that the refresh message should not be cached.

• ClearCache: true, Indicates to clear the cache.

QoS Optional. Specifies the QoS at which the stream is provided.

SeqNum Optional. A user-specified, item-level sequence number which can be used by the application for 
sequencing messages within this stream.

ItemGroup Optional. Associates the item with an Item Group (refer to Section 4.3.1.3).

PermissionData Optional. Specifies the permission information associated with content on this stream. 

extendedHeader Not used.

ServiceName Required. Specifies the name of the service from which the consumer wishes to request the item.

Note: The application should set either the ServiceName or ServiceId of the service, but not both.

ServiceId Required. Specifies the ID of the service that provides the item.

Note: The application should set either the ServiceName or ServiceId of the service, but not both.

NameType Optional. NameType should match the NameType specified in the request. If unspecified, NameType 
defaults to INSTRUMENT_NAME_RIC = 1.

Name Required. This should match the requested name.

Filter Not used.

Identifier Not used.

Table 49: Market Price Refresh Message  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 81
EMAC320UMRDM.180



Chapter 6    Market Price Domain
Attrib Not used.

Payload Required. This should consist of a FieldList containing all fields associated with the item.

COMPONENT DESCRIPTION / VALUE

Table 49: Market Price Refresh Message (Continued)
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 82
EMAC320UMRDM.180



Chapter 6    Market Price Domain
6.2.3 Market Price Update Message

A Market Price Update Message is encoded using UpdateMsg and sent by OMM provider and OMM non-interactive provider 
applications. The Market Price Update Message conveys any changes to an item’s data.

Note: The provider should only send the Name and NameType in the first Refresh response message. However if 
MsgKeyInUpdates is set to true, then the Name and NameType must be provided for every Update response messages.

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_MARKET_PRICE = 

UpdateTypeNum Required. Indicates the general content of the update:

• INSTRUMENT_UPDATE_UNSPECIFIED = 0

• INSTRUMENT_UPDATE_QUOTE = 1 

• INSTRUMENT_UPDATE_TRADE = 2 

• INSTRUMENT_UPDATE_NEWS_ALERT = 3 

• INSTRUMENT_UPDATE_VOLUME_ALERT = 4 

• INSTRUMENT_UPDATE_ORDER_INDICATION = 5 

• INSTRUMENT_UPDATE_CLOSING_RUN = 6 

• INSTRUMENT_UPDATE_CORRECTION = 7 

• INSTRUMENT_UPDATE_MARKET_DIGEST = 8 

• INSTRUMENT_UPDATE_QUOTES_TRADE = 9 

• INSTRUMENT_UPDATE_MULTIPLE = 10 

• INSTRUMENT_UPDATE_VERIFY = 11 

Indications Conditional. 

• If UpdateTypeNum is set to be INSTRUMENT_UPDATE_CORRECTION=7 or UPDVERIFY, 
DoNotRipple must be set to true

• DoNotCache: true, Indicates the application should not cache this update message.

• DoNotConflate: true, Indicates the application should not conflate updates.

QoS Optional. Specifies the QoS at which the stream is provided.

SeqNum Optional. A user-specified, item-level sequence number which can be used by the application 
for sequencing messages within this stream.

ConflatedCount Optional. If a provider sends a conflated update, ConflatedCount specifies the number of 
updates in the conflation.

The consumer indicates interest in this information by setting the 
ReqMsg.ConflatedInUpdates to true in the request.

ConflatedTime Optional. If a provider sends a conflated update, ConflatedTime specifies the time interval (in 
milliseconds) over which data is conflated.

The consumer indicates interest in this information by setting the 
ReqMsg.ConflatedInUpdates to true in the request.

ItemGroup Optional. Associates the item with an Item Group (refer to Section 4.3.1.3).

PermissionData Optional. Specifies permissioning information associated with only the contents of this update. 

Table 50: Market Price Update Message  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 83
EMAC320UMRDM.180



Chapter 6    Market Price Domain
extendedHeader Not used.

ServiceId Conditional. ServiceId is required if MsgKeyInUpdates was set to true on the request. 
Specifies the ID of the service that provides the data. 

Note: The application should set either the ServiceName or ServiceId of the service, but not 
both.

NameType Conditional. NameType is required if MsgKeyInUpdates was set to true on the request. 
NameType should match the name type specified on the request. If NameType is unspecified, its 
value defaults to INSTRUMENT_NAME_RIC = 1.

Name Conditional. Name is required if MsgKeyInUpdates was set to true on the request. Name 
specifies the name of the item being provided.

ServiceName Conditional. ServiceName is required if MsgKeyInUpdates was set to true on the request. 
Specifies the name of the service that provides the data.

Note: The application should set either the ServiceName or ServiceId of the service, but not 
both.

Filter Not used.

Identifier Not used.

Attrib Not used.

Payload Required. This should consist of a FieldList with any changed data.

COMPONENT DESCRIPTION / VALUE

Table 50: Market Price Update Message (Continued)
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 84
EMAC320UMRDM.180



Chapter 6    Market Price Domain
6.2.4 Market Price Status Message

A Market Price Update Message is encoded using UpdateMsg and sent by OMM provider and OMM non-interactive provider 
applications. It conveys any changes to an item’s data.

Note: The provider should only send the Name and NameType in the first Refresh response message. However if 
MsgKeyInUpdates is set to true, then the Name and NameType must be provided for every Update response messages.

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_MARKET_PRICE = 6

UpdateTypeNum Required. Indicates the general content of the update:

• INSTRUMENT_UPDATE_UNSPECIFIED = 0 

• INSTRUMENT_UPDATE_QUOTE = 1 

• INSTRUMENT_UPDATE_TRADE = 2 

• INSTRUMENT_UPDATE_NEWS_ALERT = 3 

• INSTRUMENT_UPDATE_VOLUME_ALERT = 4 

• INSTRUMENT_UPDATE_ORDER_INDICATION = 5 

• INSTRUMENT_UPDATE_CLOSING_RUN = 6 

• INSTRUMENT_UPDATE_CORRECTION = 7 

• INSTRUMENT_UPDATE_MARKET_DIGEST = 8 

• INSTRUMENT_UPDATE_QUOTES_TRADE = 9 

• INSTRUMENT_UPDATE_MULTIPLE = 10 

• INSTRUMENT_UPDATE_VERIFY = 11 

Indications Conditional. 

• If UpdateTypeNum is set to be INSTRUMENT_UPDATE_CORRECTION=7 or UPDVERIFY, 
DoNotRipple must be set to true

• DoNotCache: true, Indicates the application should not cache this update message.

• DoNotConflate: true, Indicates the application should not conflate updates.

QoS Optional. Specifies the QoS at which the stream is provided.

SeqNum Optional. A user-specified, item-level sequence number which can be used by the application 
for sequencing messages within this stream.

ConflatedCount Optional. If a provider sends a conflated update, ConflatedCount specifies the number of 
updates in the conflation.

The consumer indicates interest in this information by setting the 
ReqMsg.ConflatedInUpdates to true in the request.

ConflatedTime Optional. If a provider sends a conflated update, ConflatedTime specifies the time interval (in 
milliseconds) over which data is conflated.

The consumer indicates interest in this information by setting the 
ReqMsg.ConflatedInUpdates to true in the request.

ItemGroup Optional. Associates the item with an Item Group (refer to Section 4.3.1.3).

PermissionData Optional. Specifies permissioning information associated with only the contents of this update. 

Table 51: Market Price Update Message  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 85
EMAC320UMRDM.180



Chapter 6    Market Price Domain
6.2.5 Market Price Post Message

If support is specified by the provider, consumer applications can post Market Price data. For more information on posting, 
refer to the Message API C++ Edition Developers Guide.

extendedHeader Not used.

ServiceId Conditional. ServiceId is required if MsgKeyInUpdates was set to true on the request. 
Specifies the ID of the service that provides the data. 

Note: The application should set either the ServiceName or ServiceId of the service, but not 
both.

NameType Conditional. NameType is required if MsgKeyInUpdates was set to true on the request. 
NameType should match the name type specified on the request. If NameType is unspecified, its 
value defaults to INSTRUMENT_NAME_RIC = 1.

Name Conditional. Name is required if MsgKeyInUpdates was set to true on the request. Name 
specifies the name of the item being provided.

ServiceName Conditional. ServiceName is required if MsgKeyInUpdates was set to true on the request. 
Specifies the name of the service that provides the data.

Note: The application should set either the ServiceName or ServiceId of the service, but not 
both.

Filter Not used.

Identifier Not used.

Attrib Not used.

Payload Required. This should consist of an FieldList with any changed data.

COMPONENT DESCRIPTION / VALUE

Table 51: Market Price Update Message (Continued)
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 86
EMAC320UMRDM.180



Chapter 6    Market Price Domain
6.3 Data: Response Message Payload

Market Price data is conveyed as an FieldList, where each FieldEntry corresponds to a piece of information and its current 
value. The field list should be decoded by checking FieldEntry.LoadType and retrieving a specific type. For more 
information, refer to the Message API C++ Edition Developers Guide.

Figure 16.  MarketPrice Response Message Payload
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 87
EMAC320UMRDM.180



Chapter 6    Market Price Domain
6.4 Special Semantics

6.4.1 Snapshots

MarketPrice is one of a few message model types that support a true snapshot. If a non-streaming request is made, then the 
UpdateMsg will not be sent. Status messages could be received before the single Refresh response message (for details refer 
to Section 2.3) is received. For streaming and snapshot streams, the Refresh response message will always be a single 
message and it will have RefreshMsg.Complete is set to true.

6.4.2 Ripple Fields

Some fields in a FieldList are defined as ripple fields. When the value of a ripple field changes, the former value 
automatically becomes the new value of another field. The change to the second field may, in turn, cause another field to be 
changed to reflect the second field’s former value. Whether or not fields are rippled is determined by the value of 
DoNotRipple.

When a refresh message is received, all of the ripple fields delivered by the Venue/Exchange are present in the refresh 
message. However, the consuming application must set ripple behavior for fields not in the refresh message. In some cases, 
the values delivered for the “ripple-to” Fields in the refresh may be empty, but they must be present.

It is a responsibility of the Consumer application to ripple the Fields. The EMA does NOT ripple fields on behalf of the 
consumer application. The OMM FieldList concept supports rippling. However, the FieldList class does not cache, so it 
cannot ripple fields.

6.5 Specific Usage: RDF Direct MarketPrice

RDF Direct uses MarketPrice for SIAC Level 1, NASDAQ Level 1, and OPRA Level 1 data. The Refresh is provided in a single 
message. It contains all of the fields, even if they are blank.

6.6 Specific Usage: Legacy Records

MarketPrice can also be used for data structured like IDN records, such as:

• Page Records for reference page records and TS1 historical data.

• Chains for indices and ranked lists.

• Segment Chains for time & sales and news stories.
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 88
EMAC320UMRDM.180



Chapter 7    Market By Order Domain
Chapter 7 Market By Order Domain

7.1 Description

The Market By Order domain provides access to Level II full order books. The list of orders is sent in the form of a Map. Each 
MapEntry represents one order (using the order’s Id as its key) and contains a FieldList describing information related to 
that order (such as price, whether it is a bid/ask order, size, quote time, and market maker identifier).

7.2 Usage

7.2.1 Market By Order Request Message

A Market By Order request message is encoded using ReqMsg and sent by OMM consumer applications. The request 
specifies the name of the item in which a consumer is interested.

To receive updates, the consumer makes a “streaming” request by setting the ReqMsg.InterestAfterRefresh to true. If the 
method is not set, the consumer is requesting a “snapshot,” and the refresh should end the request. Updates may be received 
in either case if the refresh has multiple parts.

To stop updates, a consumer can pause an item if the provider supports this functionality. For additional details, refer to the 
Message API C++ Edition Developers Guide.

Note: GenericMsg(s) are not supported for MMT_MARKET_BY_ORDER RDMs.

COMPONENT DESCRIPTION / VALUE

MsgClass Required. RSSL_MC_REQUEST = 

DomainType Required. MMT_MARKET_BY_ORDER = 7

Interactions Required.

• InitialImage: true, Indicates that an initial image is required.

• InterestAfterRefresh: true, Indicates that a streaming request is required.

• Pause: true, Indicates that a pause is required.

Indications Optional.

ConflatedInUpdates: true, indicates conflated updates is required.

QoS Optional. Indicates the QoS at which the consumer wants the stream serviced. If both QoS and 
worstQos are specified, this request can be satisfied by a range of qualities of service.

worstQos Optional. Used with the QoS member to define a range of acceptable Qualities of Service. 
When encountering such a range, the provider should attempt to provide the best QoS it can 
within that range.

This should only be used on services that claim to support it via the SupportsQosRange item in 
the Source Directory response (refer to  Section 4.3.1.1).

Priority Optional. Indicates the class and count associated with stream priority.

Table 52: Market By Order Request Message  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 89
EMAC320UMRDM.180



Chapter 7    Market By Order Domain
extendedHeader Not used.

ServiceId Required. This should be the ID or name (e.g., “ELEKTRON_DD”) associated with the 
service from which the consumer wants to request the item. ServiceId can be left blank if the 
provider uses a default ID or name.

Note: A consumer should set either the ServiceName or ServiceId of the service, but not 
both.

ServiceName Required. This should be the name of the service from which the consumer wishes to request 
data.

Note: A consumer should set either the ServiceName or ServiceId of the service, but not 
both.

NameType Optional. When consuming from Thomson Reuters sources, NameType is typically set to 
INSTRUMENT_NAME_RIC = 1 (the “Reuters Instrument Code”). If absent, the Elektron 
Message API assumes a setting of INSTRUMENT_NAME_RIC = 1.

Name Required. Specifies the requested item’s name.

Note: Not used for Batch Item requests.

Filter Not used.

Identifier Not used.

Attrib Not used.

Payload Optional. When features such as View or Batch are leveraged, the payload can contain 
information relevant to that feature. For more detailed information, refer to Appendix A.

COMPONENT DESCRIPTION / VALUE

Table 52: Market By Order Request Message (Continued)
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 90
EMAC320UMRDM.180



Chapter 7    Market By Order Domain
7.2.2 Market By Order Refresh Message

A Market By Order refresh message is encoded using RefreshMsg and sent by OMM interactive provider and OMM non-
interactive provider applications. A Market By Order refresh may be sent in multiple parts. It is possible for update and status 
messages to be delivered between parts of a refresh message, regardless of whether the request is streaming or non-
streaming.

Note: The provider should send the Name and ServiceName only in the first Refresh response message. However if 
MsgKeyInUpdates is set to true, then the Name and ServiceName must be provided for every Refresh response message.

COMPONENT DESCRIPTION / VALUE

MsgClass Required. MISSING VARIABLE: RSSL_MC_REFRESH = 

DomainType Required. MMT_MARKET_BY_ORDER = 7

State Required. The state of the stream and data.

Solicited Required. Indicated whether the refresh was solicited. Available values are:

• true: The refresh was solicited.

• false: The refresh was unsolicited.

Indications Optional.

• DoNotCache: true, indicate do not cache this refresh message

• ClearCache: true, indicate clear cache

• Complete: true, indicate refresh complete 

PartNum Optional. Specifies the part number of a multi-part refresh.

QoS Optional. Specifies the QoS at which the stream is provided.

SeqNum Optional. A user-specified, item-level sequence number which can be used by the application 
for sequencing messages within this stream.

ItemGroup Optional. Associates the item with an Item Group (refer to Section 4.3.1.3).

PermissionData Optional. Specifies permission information associated with content on this stream.

extendedHeader Not used.

ServiceId Required. Specifies the ID or name (e.g., “ELEKTRON_DD”) of the service that provides the 
item. ServiceId can be left blank if the provider uses a default ID or name.

Note: The provider should set either the ServiceName or ServiceId of the service, but not 
both.

NameType Optional. NameType should match the NameType specified in the request. If absent, NameType is 
assumed to be INSTRUMENT_NAME_RIC = 1.

Name Required. Name should match the requested item’s name.

ServiceName Required. Specifies the name of the service that provides the item.

Note: The provider should set either the ServiceName or ServiceId of the service, but not 
both.

Table 53: Market By Order Refresh Message  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 91
EMAC320UMRDM.180



Chapter 7    Market By Order Domain
Filter Not used.

Identifier Not used.

Attrib Not used.

Payload Required. An order book is represented by a Map, where each entry (MapEntry) contains 
information (FieldList) that corresponds to an order.

COMPONENT DESCRIPTION / VALUE

Table 53: Market By Order Refresh Message (Continued)
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 92
EMAC320UMRDM.180



Chapter 7    Market By Order Domain
7.2.3 Market By Order Update Message

A Market By Order update message is encoded using UpdateMsg and sent by OMM interactive provider and OMM non-
interactive provider applications. The provider can send an update message to add, update, or remove order information. 
Updates may be received between the first Refresh and the RefreshComplete. It is the consuming application’s responsibility 
to determine if the update is applicable to the data that has previously been sent in a refresh.

Note: The provider should only send the Name and ServiceName in the first Refresh response message. However if 
MsgKeyInUpdates is set to true, then the Name and ServiceName must be provided for every Update response messages.

COMPONENT DESCRIPTION / VALUE

MsgClass Required. MISSING VARIABLE: RSSL_MC_UPDATE =

DomainType Required. MMT_MARKET_BY_ORDER = 7

UpdateTypeNum Required. Indicates the general content of the update. Typically sent as one of the following:

• INSTRUMENT_UPDATE_UNSPECIFIED = 0 

• INSTRUMENT_UPDATE_QUOTE = 1 

Indications Optional:

• DoNotCache: true, Indicates that the application should not cache this update message.

• DoNotConflate: true, Indicates that the application should not conflate this update 
message.

SeqNum Optional. A user-specified, item-level sequence number which can be used by the application 
for sequencing messages within this stream.

ConflatedCount Optional. If a provider sends a conflated update, ConflatedCount informs the consumer as to 
how many updates were included in the conflation.

The consumer indicates interest in this information by setting the 
ReqMsg.ConflatedInUpdates to true in the request.

ConflatedTime Optional. If a provider sends a conflated update, ConflatedTime informs the consumer as to 
the interval (in milliseconds) over which data was conflated.

The consumer indicates interest in this information by setting the 
ReqMsg.ConflatedInUpdates to true in the request.

PermissionData Optional. PermissionData contains permissioning information associated only with the 
contents of this update.

extendedHeader Not used.

ServiceName Conditional. ServiceName is required if MsgKeyInUpdates was set to true. ServiceName 
specifies the name of the service that provides the data.

Note: The application should set either the ServiceName or ServiceId of the service, but not 
both.

ServiceId Conditional. ServiceId is required if MsgKeyInUpdates was set to true. ServiceId 
specifies the ID or name (e.g., “ELEKTRON_DD”) of the service that provides the data. 
ServiceId can be left blank if the provider uses a default ID or name.

Note: The application should set either the ServiceName or ServiceId of the service, but not 
both.

Table 54: Market By Order Update Message  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 93
EMAC320UMRDM.180



Chapter 7    Market By Order Domain
NameType Conditional. NameType is required if MsgKeyInUpdates was set to true. NameType must 
match the name type in the item’s request message (typically INSTRUMENT_NAME_RIC = 1).

Name Optional (Required if MsgKeyInUpdates was set to true). Name specifies the name of the item 
being provided.

Filter Not used.

Identifier Not used.

Attrib Not used.

Payload Required. The order book is represented by a Map, where each map entry (MapEntry) holds 
information (FieldList) corresponding to an order.

COMPONENT DESCRIPTION / VALUE

Table 54: Market By Order Update Message (Continued)
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 94
EMAC320UMRDM.180



Chapter 7    Market By Order Domain
7.2.4 Market By Order Status Message

A Market By Order status message is encoded using StatusMsg and sent by OMM interactive provider and non-interactive 
provider applications. This message conveys state change information associated with an item stream.

Note: The provider should only send the Name and ServiceName in the first Refresh response message. However 
MsgKeyInUpdates is set to true, then the Name and ServiceName must be provided for every Status response messages.

COMPONENT DESCRIPTION / VALUE

MsgClass Required. MISSING VARIABLE: RSSL_MC_STATUS = 

DomainType Required. MMT_MARKET_BY_ORDER = 7

State Optional. Specifies the current state information associated with the data and stream.

Indications Optional:

ClearCache: true, Indicates to clear the cache.

SeqNum Optional. A user-specified, item-level sequence number which can be used by the application 
for sequencing messages within this stream.

ItemGroup Optional. The provider may use this to change the item’s ItemGroup (for details, refer to 
Section 4.3.1.3).

PermissionData Optional. PermissionData specifies any new permissioning information associated with all of 
the stream’s contents.

extendedHeader Not used.

ServiceName Conditional. ServiceName is required if MsgKeyInUpdates was set to true). Specifies the 
name of the service providing data.

Note: The application should set either the ServiceName or ServiceId of the service, but not 
both.

ServiceId Conditional. ServiceId is required if MsgKeyInUpdates was set to true). ServiceId 
specifies the ID or name (e.g., “ELEKTRON_DD”) of the service that provides the item. 
ServiceId can be left blank if the provider uses a default ID or name.

Note: The application should set either the ServiceName or ServiceId of the service, but not 
both.

NameType Conditional. NameType is required if MsgKeyInUpdates was set to true. NameType must 
match the name type in the item’s request message. If not specified, NameType defaults to 
INSTRUMENT_NAME_RIC = 1.

Name Optional (Required if MsgKeyInUpdates was set to true). Name specifies the name of the item 
being provided.

Filter Not used.

Identifier Not used.

Attrib Not used.

Payload Not used.

Table 55: Market By Order Status Message  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 95
EMAC320UMRDM.180



Chapter 7    Market By Order Domain
7.2.5 Market By Order Post Message

If support is specified by the provider, consumer applications can post Market By Order data. For more information on posting, 
refer to the Message API C++ Edition Developers Guide.
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 96
EMAC320UMRDM.180



Chapter 7    Market By Order Domain
7.3 Data

7.3.1 Response Message Payload

The payload is a Map. Refreshes for this Map may be in multiple response messages. The bandwidth of the refresh messages 
can be optimized by putting multiple MapEntry in each response messages. For optimal performance the packed map entries 
in each response message should use less than 6000 bytes. If the data is split into multiple response messages, then a 
Map.TotalCountHint should be provided to optimize downstream caching. Because the fields in each MapEntry are the 
same, bandwidth can be further optimized by DataDefinitions.

Figure 17.  MarketByOrder Response Message Payload

Note: There are two possible usage scenarios: 

• Pattern 1: ORDER_PRC, ORDER_SIDE and ORDER_SIZE.

• Pattern 2.1: BID and BIDSIZE, or Pattern 2.2: ASK and ASKSIZE.
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 97
EMAC320UMRDM.180



Chapter 7    Market By Order Domain
7.3.2 Summary Data

The Map.SummaryData only needs to be present for the first refresh part. Typical fields in the summaryData include:

• Permission information (PROD_PERM)

• Currency of the orders (CURRENCY)

• Trade Units for the precision at which order prices are set (TRD_UNITS)

• Market State (MKT_ST_IND)

• Identifier of the exchange on which the orders were placed (RDN_EXCHD2)

• Price Ranking Rules (PR_RNK_RUL)

• Order Ranking Rules (OR_RNK_RUL)

• Quote Date (QUOTE_DATE)

• RIC of the underlying equity (STOCK_RIC)

7.3.3 MapEntry Contents

The MapEntry.Key is a Buffer, Ascii, or Rmtes that contains the Order ID. The MapEntry.KeyFieldId may be set to 
ORDER_ID, so the information does not have to be repeated in the MapEntry.Value.

The MapEntry.Value is a FieldList that typically contains the following information about the order: 

• Order Price and Side (BID, ASK, or ORDER_PRC and ORDER_SIDE)

• Order Size (BIDSIZE, ASKSIZE, or ORDER_SIZE)

• Price Qualifiers (PRC_QL_CD, PRC_QL2)

• Market Maker Identifier (MKT_MKR_ID or MMID)

• Quote Time (QUOTIM_MS)

7.4 Special Semantics

None.

7.5 Specific Usage: RDF Direct and Response Message Payload

RDF Direct uses MarketByOrder for several markets, including NASDAQ TotalView, Archipelago ECN order book, and Instinet 
ECN order book.

The payload is a Map. Each Refresh for this Map includes summary data and a single MapEntry. Updates are not sent for any 
map entry until after the message is sent with RefreshMsg.Complete set to true. Since each resposne message includes only 
one map entry, DataDefinitions are not used to reduce bandwidth. The Map.TotalCountHint is not provided.

The Map.SummaryData is sent in every Refresh, even if it does not change. The fields used are from the RWFFld Field 
Dictionary:

• PROD_PERM (1): Integer for permission information.

• CURRENCY (15): Enumeration of currency for the orders.
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 98
EMAC320UMRDM.180



Chapter 7    Market By Order Domain
• TRD_UNITS (53): Enumeration of trade Units for the precision for which order prices are set.

• MKT_ST_IND (133): Enumeration of market state.

• RDN_EXCHD2 (1709): Enumeration of exchange on which the orders were placed.

• PR_RNK_RUL (3423): Enumeration of price ranking rules.

• OR_RNK_RUL (3425): Enumeration of order ranking rules.

• STOCK_RIC (1026): RIC of the underlying equity.

The MapEntry.Key is a buffer that contains the Order ID. The Map.KeyFieldId is not set, but this may be changed in the 
future.

The MapEntry.Data is a field list that contains some or all of the following information about the order:

• ORDER_PRC (3427) & ORDER_SIDE (3428): Real and Enumeration for the order price & side (buy or sell/bid or ask).

• ORDER_SIZE (3429): Real for the order size.

• ORDER_ID (3426): Same value as the MapEntry.KeyData. This may be removed in the future by setting the 
Map.KeyFieldId to ORDER_ID (3426).

• QUOTIM_MS (3855): Quote Time in millisecond since GMT of the current day in the GMT time zone.

The FieldList.DictId is 0, so it should be ignored.

7.6 Specific Usage: Enterprise Platform

For the most part, MarketByOrder data from the Enterprise Platform is the same as it is from the original source of the data 
(e.g. RDF Direct). However, if caching is enabled in an Enterprise Platform component, there are two differences.

• The number of messages packed into each Refresh response message may be different.

• An updated response message might be delivered between Refresh response messages and before the message with 
RefreshMsg.Complete set true. It is the consumer applications responsibility to apply the indicated changes.
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 99
EMAC320UMRDM.180



Chapter 8    Market By Price Domain
Chapter 8 Market By Price Domain

8.1 Description

Market By Price provides access to Level II market depth information. The list of price points is sent in a Map. Each entry 
represents one price point (using that price and bid/ask side as its key) and contains a FieldList that describes information 
related to that price point.

8.2 Usage

8.2.1 Market By Price Request Message

A Market By Price request message is encoded using ReqMsg and sent by OMM consumer applications. The request specifies 
the name of an item in which the consumer is interested.

To receive updates, a consumer can make a “streaming” request by setting ReqMsg.InterestAfterRefresh to true. If the flag 
is not set, the consumer requests a “snapshot” and the refresh should end the request (updates may be received in either case 
if the refresh has multiple parts).

A consumer can pause an item to stop updates (if the provider supports such functionality). For more information, refer to the 
Message API C++ Edition Developers Guide.

Note: GenericMsg(s) are not supported for the MMT_MARKET_BY_PRICE Reuters Domain Model.

COMPONENT DESCRIPTION / VALUE

MsgClass Required. RSSL_MC_REQUEST = 

DomainType Required. MMT_MARKET_BY_PRICE = 8

Interactions Conditional.

• InitialImage: true, indicates that an initial image is required.

• InterestAfterRefresh: true, indicates that a streaming request is required.

• Pause: true, indicates that a pause is required.

Indications Optional.

ConflatedInUpdates: true, indicates that conflated updates are required.

Batch and View requests are specified in the Payload.

QoS Optional. Indicates the QoS at which the consumer wants the stream serviced. If both QoS and 
worstQos are specified, this request can be satisfied by a range of QoS.

worstQos Optional. Used with QoS to define a range of acceptable QoS. When the provider encounters 
such a range, it should attempt to provide the best QoS possible within that range.

This should only be used on services that claim to support it via the SupportsQosRange item in 
the Source Directory response (for further details, refer to Section 4.3.1.1).

Priority Optional. Indicates the class and count associated with stream priority.

Table 56: Market By Price Request Message  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 100
EMAC320UMRDM.180



Chapter 8    Market By Price Domain
8.2.2 Market By Price Refresh Message

A Market By Price refresh message is encoded using RefreshMsg and sent by OMM interactive provider and OMM non-
interactive provider applications.

A Market By Price refresh may be sent in multiple parts. Both update and status messages can be delivered between parts of 
a refresh message, regardless of streaming or non-streaming request.

extendedHeader Not used.

ServiceName Required. Specifies the name of the service from which the consumer wishes to request data.

Note: The application should set either the ServiceName or ServiceId of the service, but not 
both.

ServiceId Required. Specifies the ID or name (e.g., “ELEKTRON_DD”) of the service that provides the 
requested item. ServiceId can be left blank if the provider uses a default ID or name.

Note: The application should set either the ServiceName or ServiceId of the service, but not 
both.

NameType Optional. Typically set to INSTRUMENT_NAME_RIC = 1 (the “Reuters Instrument Code”) 
when consuming from Thomson Reuters sources. If absent, its default value is 
INSTRUMENT_NAME_RIC = 1.

Name Required. Specifies the name of the requested item.

Filter Not used.

Identifier Not used.

Attrib Not used.

Payload Optional. When features such as View or Batch are leveraged, the payload can contain 
information relevant to that feature.

For further details, refer to the Appendix A.

Note: The provider should send Name and ServiceName only in the first Refresh response message, unless 
MsgKeyInUpdates is set to true, in which case Name and ServiceName must be provided in each Refresh response message.

COMPONENT DESCRIPTION / VALUE

MsgClass Required. MISSING VARIABLE: RSSL_MC_REFRESH = 

DomainType Required. MMT_MARKET_BY_PRICE = 8

State Required. Indicates the state of the stream and data.

Table 57: Market By Price Refresh Message  

COMPONENT DESCRIPTION / VALUE

Table 56: Market By Price Request Message (Continued)
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 101
EMAC320UMRDM.180



Chapter 8    Market By Price Domain
Solicited Required. Indicates whether the refresh message was solicited.

• true: The refresh message is solicited.

• false: The refresh message is unsolicited.

Indications Conditional.

• DoNotCache: true, indicates that the application should not cache this refresh message.

• ClearCache: true, indicates that the application should clear its cache.

• Complete: true, indicates that this is the last message in the refresh complete.

PartNum Optional. Specifies the part number of a multi-part refresh.

QoS Optional. Specifies the QoS at which the stream is provided.

SeqNum Optional. A user-specified, item-level sequence number which can be used by the application 
for sequencing messages within this stream.

ItemGroup Optional. Associates the item with an Item Group (for further information, refer to Section 
4.3.1.3).

PermissionData Optional. If present, specifies permission information associated with the stream’s content.

extendedHeader Not used.

ServiceName Required. Specifies the name of the service that provides the item.

Note: The consumer application should set either the ServiceName or ServiceId of the 
service, but not both.

ServiceId Required. Specifies the ID or name (e.g., “ELEKTRON_DD”) of the service that provides the 
item. ServiceId can be left blank if the provider uses a default ID or name.

Note: The consumer application should set either the ServiceName or ServiceId of the 
service, but not both.

NameType Optional. NameType should match the NameType specified in the request. If absent, this value is 
assumed to be INSTRUMENT_NAME_RIC = 1.

Name Required. Name should match the name specified in the request.

Filter Not used.

Identifier Not used.

Attrib Not used.

Payload Required. The order book is represented by a Map, where each entry (MapEntry) contains a 
FieldList which has information about a price point.

COMPONENT DESCRIPTION / VALUE

Table 57: Market By Price Refresh Message (Continued)
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 102
EMAC320UMRDM.180



Chapter 8    Market By Price Domain
8.2.3 Market By Price Update Message

A Market By Price update message is encoded using UpdateMsg and sent by OMM interactive provider and OMM non-
interactive provider applications. The provider can send an update message to add, update, or remove price point information. 
Updates will not be received before images. True snapshots are supported.

Note: The provider should send Name and ServiceName only in the first Refresh response message. However if 
MsgKeyInUpdates is set to true, then Name and ServiceName must be provided for every Update response message.

COMPONENT DESCRIPTION / VALUE

MsgClass Required. MISSING VARIABLE: RSSL_MC_UPDATE = 

DomainType Required. MMT_MARKET_BY_PRICE = 8

UpdateTypeNum Required. Indicates the general content of the update. Typically sent as one of the following:

• INSTRUMENT_UPDATE_UNSPECIFIED = 0 

• INSTRUMENT_UPDATE_QUOTE = 1 

Indications Optional.

• DoNotCache: true, indicates to not cache the update message.

• DoNotConflate: true, indicates to not conflate the update message.

QoS Optional. Specifies the QoS at which the stream is provided.

SeqNum Optional. A user-specified, item-level sequence number which can be used by the application 
for sequencing messages within this stream.

ConflatedCount Optional. If a provider sends a conflated update, ConflatedCount specifies how many updates 
were included in the conflation.

The consumer indicates interest in this information by setting the 
ReqMsg.ConflatedInUpdates flag in the request.

ConflatedTime Optional. If a provider sends a conflated update, ConflatedTime specifies the time interval (in 
milliseconds) over which data is conflated.

The consumer indicates interest in this information by setting the 
ReqMsg.ConflatedInUpdates flag in the request.

PermissionData Optional. Specifies permissioning information for the update’s content.

extendedHeader Not used.

ServiceName Conditional. ServiceName is required if MsgKeyInUpdates was set to true on the request. 
Specifies the name of the service that provides the data.

Note: The provider application should set either the ServiceName or ServiceId of the service, 
but not both.

ServiceId Conditional. ServiceId is required if MsgKeyInUpdates was set to true on the request. 
Specifies the ID or name (e.g., “ELEKTRON_DD”) of the service that provides the item. 
ServiceId can be left blank if the provider uses a default ID or name.

Note: The provider application should set either the ServiceName or ServiceId of the service, 
but not both.

Table 58: Market By Price Update Message  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 103
EMAC320UMRDM.180



Chapter 8    Market By Price Domain
8.2.4 Market By Price Status Message

A Market By Price status message is encoded using StatusMsg and sent by OMM interactive provider and non-interactive 
provider applications. This message conveys state change information associated with an item stream.

NameType Conditional. NameType is required if MsgKeyInUpdates was set to true on the request. 
NameType should match the NameType specified in the item’s request message. If NameType is 
not specified, it uses the default INSTRUMENT_NAME_RIC = 1.

Name Conditional. Name is required if MsgKeyInUpdates was set to true on the request) Specifies 
the name of the item being provided.

Filter Not used.

Identifier Not used.

Attrib Not used.

Payload Required. MarketByPrice is represented by a Map, where each entry contains a FieldList 
containing information about a price point.

Note: The provider should send Name and ServiceName only in the first Refresh response message, unless 
MsgKeyInUpdates is set to true, in which case Name and ServiceName must be provided for every Status response message.

COMPONENT DESCRIPTION / VALUE

MsgClass Required. MISSING VARIABLE: RSSL_MC_STATUS = 

DomainType Required. MMT_MARKET_BY_PRICE = 8

State Optional. Specifies current state information associated with the data and stream.

Indications Optional.

ClearCache: true, Indicates to clear the cache.

QoS Optional. Specifies the QoS at which the stream is provided.

ItemGroup Optional. Specifies the item’s ItemGroup (the provider can use this component to change the 
item’s ItemGroup).

PermissionData Optional. Specifies new permissioning information associated with all contents on the stream. 

extendedHeader Not used.

ServiceName Conditional. ServiceName is required if MsgKeyInUpdates was set to true on the request. 
Specifies the name of the service that provides the data.

Note: The provider application should set either the ServiceName or ServiceId of the service, 
but not both.

Table 59: Market By Price Status Message  

COMPONENT DESCRIPTION / VALUE

Table 58: Market By Price Update Message (Continued)
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 104
EMAC320UMRDM.180



Chapter 8    Market By Price Domain
8.2.5 Market By Price Post Message

If supported by the provider, consumer applications can post Market By Price data. For more information on posting, refer to 
the Message API C++ Edition Developers Guide.

ServiceId Conditional. ServiceId is required if MsgKeyInUpdates was set to true on the request. 
Specifies the ID or name (e.g., “ELEKTRON_DD”) of the service that provides the item. 
ServiceId can be left blank if the provider uses a default ID or name.

Note: The provider application should set either the ServiceName or ServiceId of the service, 
but not both.

NameType Conditional. NameType is required if MsgKeyInUpdates was set to true on the request. 
NameType should match the NameType specified in the item’s request message. If NameType is 
not specified, it uses the default INSTRUMENT_NAME_RIC = 1.

Name Conditional. Name is required if MsgKeyInUpdates was set to true on the request. Specifies 
the name of the item being provided.

Filter Not used.

Identifier Not used.

Attrib Not used.

Payload Not used.

COMPONENT DESCRIPTION / VALUE

Table 59: Market By Price Status Message (Continued)
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 105
EMAC320UMRDM.180



Chapter 8    Market By Price Domain
8.3 Data

8.3.1 Response Message Payload

The payload is a Map. Refreshes for this Map may be in multiple Response messages. The bandwidth of the refresh messages 
can be optimized by putting multiple MapEntry in each response message. For optimal performance the packed map entries in 
each response message should use less than 6000 bytes. If the data is split into multiple messages, then a 
Map.TotalCountHint should be provided to optimize downstream caching. Since the fields in each map entry are the same, 
bandwidth can be further optimized by DataDefinitions.

Figure 18.  MarketByPrice Response Message Payload

8.3.2 Summary Data

The Map.SummaryData needs to be present only for the first refresh part, which typically includes:

• Permission information (PROD_PERM)

• Currency of the orders (CURRENCY)

• Trade Units for the precision with which order prices are set (TRD_UNITS)

• Market State (MKT_ST_IND)

• The identifier of the exchange on which the orders were placed (RDN_EXCHD2)

• Price Ranking Rules (PR_RNK_RUL)

• Quote Date (QUOTE_DATE)
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 106
EMAC320UMRDM.180



Chapter 8    Market By Price Domain
8.3.3 MapEntry.Key Contents

The MapEntry.Key’s data is a Buffer that contains a combination of the price and order side, thus each key is unique within 
its map. The MapEntry.Key’s data should be treated as a single entity and is not meant to be parsed.

MapEntry.Data is a FieldList that contains some or all of the following information about the price point:

• Order Price & Side (BID, ASK, or ORDER_PRC and ORDER_SIDE)

• Order Size (BIDSIZE, ASKSIZE, or ORDER_SIZE)

• Number of aggregated orders (NO_ORD)

• Quote Time (QUOTIM_MS)

• A map containing the Market Makers (MMID) and optionally a field list with each of the market makers’ positions at the 
Order Price point.

8.4 Special Semantics

None
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 107
EMAC320UMRDM.180



Chapter 8    Market By Price Domain
8.5 Specific Usage: RDF Direct and the Response Message Payload

RDF Direct uses MARKET_BY_PRICE for several markets, including NYSE OpenBook, Archipelago ECN market depth, and 
Instinet ECN market depth.

The payload is a Map. Each refresh message for this Map includes SummaryData and up to 50 map entries. Updates are not 
sent for any map entry until after the RefreshMsg.Complete is set to true. DataDefinitions are not used to reduce bandwidth. 
Map.TotalCountHint is not provided.

Map.SummaryData is sent in every refresh message, even if it does not change. The fields used are from the RWFFld Field 
Dictionary:

• PROD_PERM (1): Integer for permission information

• CURRENCY (15): Enumeration of currency for the orders

• TRD_UNITS (53): Enumeration of trade Units for the precision for which order prices are set

• MKT_ST_IND (133): Enumeration of market state

• RDN_EXCHD2 (1709): Enumeration of exchange on which the orders were placed

The MapEntry.Key’s data is a Buffer that contains the combination of price and order side (B for buy or S for Sell), so each key 
is unique within its map. The MapEntry.Key’’s data should be treated as a single entity and is not meant to be parsed.

The MapEntry.Value is a FieldList that contains the following information about the price point:

• NO_ORD (3430): Integer for the Number of Orders aggregated into this MapEntry 

• ORDER_PRC (3427) & ORDER_SIDE (3428): Real and Enumeration for the order price & side (buy or sell/bid or ask)

• ORDER_SIZE (3429): Real for the aggregated size of the order at this price

• QUOTIM_MS (3855): Quote Time in millisecond since GMT of the current day in the GMT time zone

• Some venues may provide an extra field that contains a map. The MapEntry.KeyData will have a KeyFieldId which is 
MMID (3435). If the positions of each market maker are available, then the MapEntry.Value will contain a FieldList. The 
field list will contain a single field with the position of that market maker. If positions for each market maker are not 
available, MapEntry.Value’s data type will be NoData.

The FieldList.DictId is 0, so it should be ignored.

8.6 Specific Usage: Enterprise Platform

For the most part, MarketByPrice data from the Enterprise Platform is the same as it is from the original source of the data 
(e.g. RDF Direct). However, if caching is enabled in an Enterprise Platform component, there are two differences.

• The number of messages packed into each Refresh response message may be different.

• Updated response messages may be delivered between Refresh response messages, before the RespMsg.Complete is 
set to true. It is the consumer applications responsibility to apply the indicated changes.
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 108
EMAC320UMRDM.180



Chapter 9    Market Maker Domain
Chapter 9 Market Maker Domain

9.1 Description

The Market Maker domain provides access to market maker quotes and trade information. The list of market makers is sent in 
the form of a Map. Each MapEntry represents one market maker (using that market maker’s ID as its key) and contains a 
FieldList describing information such as that market maker’s bid and ask prices, quote time, and market source.

9.2 Usage

9.2.1 Market Maker Request Message

A Market Maker request message is encoded using ReqMsg and sent by OMM consumer applications. The request specifies 
the name of an item in which the consumer is interested.

To receive updates, a consumer can make a “streaming” request by setting the ReqMsg.InterestAfterRefresh to true. If the 
flag is not set, the consumer requests a “snapshot,” and the final part of the refresh indicates all responses have been received 
for the snapshot. Updates may be received in either case if the refresh has multiple parts.

To stop updates, a consumer can pause an item (if the provider supports this functionality). For more information, refer to the 
Message API C++ Edition Developers Guide.

Note: GenericMsg(s) are not supported for the MMT_MARKET_MAKER Reuters Domain Model.

COMPONENT DESCRIPTION / VALUE

MsgClass Required. RSSL_MC_REQUEST = 

DomainType Required. MMT_MARKET_MAKER = 9 

Interactions Conditional. Use the appropriate interactions according to your messaging needs:

• InitialImage: true, indicates that an initial image is required.

• InterestAfterRefresh: true, indicates that a streaming request is required.

• Pause: true, indicates that a pause is required.

Indications Optional.

ConflatedInUpdates: true, indicates that conflated updates are required.

Batch and View request are specified in the Payload.

QoS Optional. Indicates the QoS at which the consumer wants the stream serviced. If both QoS and 
worstQos are specified, this request can be satisfied by a range of QoS. 

worstQos Optional. Used with QoS to define a range of acceptable QoS. If the provider encounters such a 
range, it should attempt to provide the best possible QoS within that range.

This should only be used on services that claim to support it via the SupportsQosRange item in 
the Source Directory response (for details, refer to Section 4.3.1.1).

Priority Optional. Indicates the class and count associated with stream priority.

Table 60: Market Maker Request Message  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 109
EMAC320UMRDM.180



Chapter 9    Market Maker Domain
extendedHeader Not used.

ServiceName Required. Specifies the name of the service from which the consumer wishes to request the 
item.

Note: The consumer application should set either the ServiceName or ServiceId of the 
service, but not both.

ServiceId Required. Specifies the ID or name (e.g., “ELEKTRON_DD”) of the service that provides the 
requested item. ServiceId can be left blank if the provider uses a default ID or name.

Note: The consumer application should set either the ServiceName or ServiceId of the 
service, but not both.

NameType Optional. When consuming from Thomson Reuters sources, NameType is typically set to 
INSTRUMENT_NAME_RIC = 1 (the “Reuters Instrument Code”). If absent, its value reverts to 
the default, which is INSTRUMENT_NAME_RIC = 1.

Name Required. Specifies the name of the requested item.

Note: Not used for Batch Item request.

Filter Not used.

Identifier Not used.

Attrib Not used.

Payload Optional. When features such as View or Batch are leveraged, the payload can contain 
information relevant to that feature. For more details, refer to Appendix A.

COMPONENT DESCRIPTION / VALUE

Table 60: Market Maker Request Message (Continued)
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 110
EMAC320UMRDM.180



Chapter 9    Market Maker Domain
9.2.2 Market Maker Refresh Message

A Market Maker refresh message is encoded using RefreshMsg and sent by OMM interactive provider and OMM non-
interactive provider applications.

The Market Maker refresh can be sent in multiple parts. Keep in mind that both update and status messages can be delivered 
between parts of a refresh message, regardless of streaming or non-streaming request.

Note: The provider should send the Name and ServiceName only in the first Refresh response message. However if 
MsgKeyInUpdates is set to true, then the Name and ServiceName must be provided for every Refresh response message.

COMPONENT DESCRIPTION / VALUE

MsgClass Required. MISSING VARIABLE: RSSL_MC_REFRESH =  

DomainType Required. MMT_MARKET_MAKER = 9 

State Required. Indicates the state of the stream and data.

Solicited Required. Indicates whether the refresh was solicited. Available values are:

• true: The message was solicited.

• false: The message was unsolicited.

Indications Conditional.

• DoNotCache: true, indicates that the application should not cache.

• ClearCache: true, indicates that the application should clear the cache.

• Complete: true, indicates that the message is the final one in the refresh.

PartNum Optional. Specifies the part number of a multi-part refresh.

QoS Optional. Specifies the QoS at which the stream is provided.

SeqNum Optional. A user-specified, item-level sequence number which can be used by the application 
for sequencing messages within this stream.

ItemGroup Required. Associates the item with an Item Group (refer to Section 4.3.1.3).

PermissionData Optional. Specifies permission information associated with this stream’s content. 

extendedHeader Not used.

ServiceName Required. Specifies the name of the service that provides the item.

Note: The provider application should set either the ServiceName or ServiceId of the service, 
but not both.

ServiceId Required. Specifies the ID or name (e.g., “ELEKTRON_DD”) of the service that provides the 
item. ServiceId can be left blank if the provider uses a default ID or name.

Note: The provider application should set either the ServiceName or ServiceId of the service, 
but not both.

NameType Optional. NameType should match the NameType specified in the request. If absent, NameType 
defaults to INSTRUMENT_NAME_RIC = 1.

Name Required. A symbol for the Market Maker item.

Table 61: Market Maker Refresh Message  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 111
EMAC320UMRDM.180



Chapter 9    Market Maker Domain
Filter Not used.

Identifier Not used.

Payload Required. A Market Maker is represented by a Map, where each entry (MapEntry) contains an 
FieldList which has information about a market maker.

COMPONENT DESCRIPTION / VALUE

Table 61: Market Maker Refresh Message (Continued)
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 112
EMAC320UMRDM.180



Chapter 9    Market Maker Domain
9.2.3 Market Maker Update Message

A Market Maker update message is encoded using UpdateMsg and sent by OMM interactive provider and OMM non-
interactive provider applications. Updates will not be received before images, and a true snapshot is supported.

The provider can send an update message to add, update, or remove market maker information.

Note: The provider should send the Name and ServiceName only in the first Refresh response message. However if 
MsgKeyInUpdates is set to true, then the Name and ServiceName must be provided for every Update response message.

COMPONENT DESCRIPTION / VALUE

MsgClass Required. MISSING VARIABLE: RSSL_MC_UPDATE = 

DomainType Required. MMT_MARKET_MAKER = 9

UpdateTypeNum Required. Indicates the general content of the update. Typically sent as one of the following:

• INSTRUMENT_UPDATE_UNSPECIFIED = 0 

• INSTRUMENT_UPDATE_QUOTE = 1 

Indications Optional:

• DoNotCache: true, specifies that the update message should not be cached.

• DoNotConflate: true, specifies that the update message should not be conflated.

PartNum Not used.

QoS Optional. Specifies the QoS at which the stream is provided.

SeqNum Optional. A user-specified, item-level sequence number which can be used by the application 
for sequencing messages within this stream.

ConflatedCount Optional. If a provider sends a conflated update, ConflatedCount specifies how many updates 
are in the conflation.

The consumer indicates interest in this information by setting ReqMsg.ConflatedInUpdates to 
true in the request.

ConflatedTime Optional. If a provider sends a conflated update, ConflatedTime specifies the time interval (in 
milliseconds) over which data is conflated.

The consumer indicates interest in this information by setting ReqMsg.ConflatedInUpdates to 
true in the request.

PermissionData Optional. Specifies permissioning information associated only with the contents of this update. 

extendedHeader Not used.

ServiceName Conditional. ServiceName is required if MsgKeyInUpdates was set to true. ServiceName 
specifies the name of the service that provides the data.

Note: The provider application should set either the ServiceName or ServiceId of the service, 
but not both.

Table 62: Market Maker Update Message  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 113
EMAC320UMRDM.180



Chapter 9    Market Maker Domain
9.2.4 Market Maker Status Message

A Market Maker status message is encoded and sent by OMM interactive provider and non-interactive provider applications. 
This message conveys state change information associated with an item stream.

ServiceId Conditional. ServiceId is required if MsgKeyInUpdates was set to true. ServiceId 
specifies the ID or name (e.g., “ELEKTRON_DD”) of the service that provides the item. 
ServiceId can be left blank if the provider uses a default ID or name.

Note: The provider application should set either the ServiceName or ServiceId of the service, 
but not both.

NameType Conditional. NameType is required if MsgKeyInUpdates was set to true. NameType must 
match the name type in the item’s request message (typically INSTRUMENT_NAME_RIC = 1). 
If absent, NameType defaults to INSTRUMENT_NAME_RIC = 1.

Name Conditional. Name is required if MsgKeyInUpdates was set to true. Name specifies the name 
of the item being provided.

Filter Not used.

Identifier Not used.

Attrib Not used.

Payload Required. A Market Maker is represented by a Map, where each entry (MapEntry) contains a 
FieldList which in turn contains information about a market maker.

Note: The provider should send the Name and ServiceName only in the first Refresh response message. However if 
MsgKeyInUpdates is set to true, then the Name and ServiceName must be provided for every Status response message.

COMPONENT DESCRIPTION / VALUE

MsgClass Required. MISSING VARIABLE: RSSL_MC_STATUS = 

DomainType Required. MMT_MARKET_MAKER = 9 

State Optional. Specifies current state information associated with the data and stream.

Indications Optional.

ClearCache: true, indicates that the application should clear the cache.

QoS Optional. Specifies the QoS at which the stream is provided.

ItemGroup Optional. The provider can use this component to change the items’ ItemGroup.

PermissionData Optional. Specifies new permissioning information associated with all of the stream’s contents.

extendedHeader Not used.

Table 63: Market Maker Status Message  

COMPONENT DESCRIPTION / VALUE

Table 62: Market Maker Update Message (Continued)
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 114
EMAC320UMRDM.180



Chapter 9    Market Maker Domain
9.2.5 Market Maker Post Message

If the provider supports Market Maker post messages, consumer applications can post Market Maker data. For more 
information on posting, refer to the Message API C++ Edition Developers Guide.

ServiceName Conditional. ServiceName is required if MsgKeyInUpdates was set to true. ServiceName 
specifies the name of the service that provides the data.

Note: The provider application should set either the ServiceName or ServiceId of the service, 
but not both.

ServiceId Conditional. ServiceId is required if MsgKeyInUpdates was set to true. ServiceId 
specifies the ID or name (e.g., “ELEKTRON_DD”) of the service that provides the item. 
ServiceId can be left blank if the provider uses a default ID or name.

Note: The provider application should set either the ServiceName or ServiceId of the service, 
but not both.

NameType Conditional. NameType is required if MsgKeyInUpdates was set to true. NameType must 
match the name type in the item’s request message (typically INSTRUMENT_NAME_RIC = 1). 
If absent, NameType defaults to INSTRUMENT_NAME_RIC = 1.

Name Conditional. Name is required if MsgKeyInUpdates was set to true. Name specifies the name 
of the item being provided.

Filter Not used.

Identifier Not used.

Attrib Not used.

Payload Not used.

COMPONENT DESCRIPTION / VALUE

Table 63: Market Maker Status Message (Continued)
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 115
EMAC320UMRDM.180



Chapter 9    Market Maker Domain
9.3 Data

9.3.1 Response Message Payload

The payload is a Map. Refreshes for this Map may be in multiple response messages. The bandwidth of the Refresh response 
messages can be optimized by putting multiple MapEntry in each Response message. For optimal performance the packed 
map entries in each response message should use less than 6000 bytes. If the data is split into multiple messages, then a 
Map.TotalCountHint should be provided to optimize downstream caching. Because the fields in each map entry are identical, 
bandwidth can be further optimized by DataDefinitions.

Figure 19.  MarketMaker Response Message Payload

9.3.2 Summary Data

The Map.SummaryData only needs to be present in the first refresh part. Typical fields in the Map.SummaryData include:

• Permission information (PROD_PERM)

• Currency of the orders (CURRENCY)

• Trade Units for the precision at which order prices are set (TRD_UNITS)

• Identifier of the exchange on which the orders were placed (RDN_EXCHD2)

• Market State indicating the state of the market (MKT_ST_IND)

• Price ranking rules (PR_RNK_RUL)

• Quote Date (QUOTE_DATE)
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 116
EMAC320UMRDM.180



Chapter 9    Market Maker Domain
9.3.3 MapEntry Contents

Each MapEntry.key’s data is a Buffer that contains a unique market maker’s ID. The Map.KeyFieldId may be set to MMID 
or MKT_MKR_ID, so the information does not have to be repeated in the MapEntry.Data.

Each MapEntry houses a FieldList that contains information about the market maker.

The field list typically includes:

• Bid (BID)

• Ask (ASK)

• Bid Size (BIDSIZE)

• Ask Size (ASKSIZE)

• Market Source (MKT_SOURCE)

• Market Maker Name (MKT_MKR_NM)

• Price Qualifiers (PRC_QL_CD and PRC_QL2)

• Quote Time (QUOTIM_MS)

9.4 Special Semantics

None.

9.5 Specific Usage: RDF Direct and the Response Message Payload

RDF Direct uses MARKET_MAKER for NASDAQ Market Makers.

The payload is a Map. Each Refresh message for this Map includes SummaryData and up to 50 MapEntrys. Updates are not 
sent for any map entry until after the RefreshMsg.Complete is sent with a value of true. DataDefinitions are not used to 
reduce bandwidth. The Map.TotalCountHint is not provided.

Map.SummaryData is sent in every refresh, even if it does not change. The fields used are from the RWFFld Field Dictionary: 

• PROD_PERM (1): Integer for permission information

• CURRENCY (15): Enumeration of currency for the orders 

• TRD_UNITS (53): Enumeration of trade Units for the precision for which order prices are set

• MKT_ST_IND (133): Enumeration of market state

• RDN_EXCHD2 (1709): Enumeration of exchange on which the orders were placed

• PR_RNK_RUL (3423): Enumeration of price ranking rules

The MapEntry.Key’s Data is a Buffer containing a unique market maker ID. The MapEntry.KeyFieldId is not set, but this may 
be changed in the future.

The MapEntry.Data is a FieldList that contains some or all of the following information about the order:

• BID (22): Real with the best bid price from this market maker

• ASK (25): Real with the best ask price from this market maker

• BIDSIZE (30): Real with the size of the best bid
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 117
EMAC320UMRDM.180



Chapter 9    Market Maker Domain
• ASKSIZE (31): Real with the size of the best ask

• MKT_MKR_ID (212): RmtesString with the Market Maker ID. This may be removed in the future by setting the 
Map.KeyFieldId to MKT_MKR_ID (212) or MMID (3435).

• MKT_SOURCE (213): Enumeration with the Exchange or City of the quote

• MKT_MKR_NM (214): RmtesString with the Market Maker Name

• PRC_QL_CD (118): Enumeration for first price qualifier

• PRC_QL2 (131): Enumeration for second price qualifier

• QUOTIM_MS (3855): Quote Time in millisecond since GMT of the current day in the GMT time zone

The FieldList.DictId is 0, so it should be ignored.

9.6 Specific Usage: Enterprise Platform

For the most part, MarketMaker data from the Enterprise Platform is the same as it is from the original source of the data (e.g. 
RDF Direct). However, if caching is enabled in an Enterprise Platform component, there will be two differences.

The number of messages packed into each Refresh response message may be different.

An Update response message may be delivered between Refresh response messages, before RefreshMsg.Complete is sent 
with a true value. It is up to the consumer application to apply the indicated changes.
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 118
EMAC320UMRDM.180



Chapter 10    Yield Curve Domain
Chapter 10 Yield Curve Domain

10.1 Description

The Yield Curve domain shows the relation between the interest rate and the term (time to maturity) associated with the debt 
of a borrower. The shape of a yield curve can help give an idea of future economic activity and interest rates. Information is 
sent as a FieldList, where some FieldEntry‘s can contain more complex types such as Vector, Array, or ElementList.

This chapter documents the Yield Curve domain as provided by the ATS.

10.2 Usage

10.2.1 Yield Curve Request Message

A Yield Curve request message is encoded using ReqMsg and sent by OMM consumer applications. The request specifies the 
name and attributes of the curve in which the consumer is interested.

To receive updates, the consumer makes a “streaming” request by setting the ReqMsg.InterestAfterRefresh to true. If the 
flag is not set, the consumer requests a “snapshot,” and the final part of the refresh (i.e., the refresh has the 
RefreshMsg.Complete flag set) indicates all responses have been received for the snapshot. Updates may be received in 
either case if the refresh has multiple parts.

To stop updates, a consumer can pause an item (if the provider supports the pause feature). For additional details, refer to the 
Message API C++ Edition Developers Guide.

Note: The MMT_YIELD_CURVE Reuters Domain Model does not support GenericMsg(s).

COMPONENT DESCRIPTION / VALUE

msgClass Required. RSSL_MC_REQUEST = 

DomainType Required. MMT_YIELD_CURVE = 22

Interactions Conditional.

• InitialImage: true, requests an initial image.

• InterestAfterRefresh: true, requests streaming updates.

• Pause: true, requests that the application pause the item.

Indications Optional.

ConflatedInUpdates: true, requests that the application send conflated updates.

Batch and View request are specified in the Payload.

QoS Optional. Indicates the QoS at which the consumer wants the stream serviced. If both QoS and 
worstQos are specified, this request can be satisfied by a range of QoS.

Table 64: Yield Curve Request Message  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 119
EMAC320UMRDM.180



Chapter 10    Yield Curve Domain
worstQos Optional. Used with the QoS member to define a range of acceptable QoS. When the provider 
encounters such a range, it should attempt to provide the best QoS it can within that range.

worstQos should only be used on services that claim to support it via the SupportsQosRange 
item in the Source Directory response (refer to Section 4.3.1.1).

Priority Optional. Indicates class and count associated with stream priority.

extendedHeader Not used.

ServiceName Required. Specifies the name of the service from which the consumer wishes to request the 
item.

Note: The application should set either the ServiceName or ServiceId of the service, but not 
both.

ServiceId Required. Specifies the ID or name (e.g., “ELEKTRON_DD”) of the service that provides the 
requested item. ServiceId can be left blank if the provider uses a default ID or name.

Note: The application should set either the ServiceName or ServiceId of the service, but not 
both.

NameType Optional. When consuming from Thomson Reuters sources, typically set to 
INSTRUMENT_NAME_RIC = 1 (the “Reuters Instrument Code”). If this is not specified, 
NameType defaults to INSTRUMENT_NAME_RIC = 1.

Name Required.Specifies the name of the requested item.

Note: Not used for Batch Item request.

Filter Not used.

Identifier Not used.

Attrib Not used.

Payload Optional. When leveraging such features as View or Batch, the payload can contain 
information relevant to that feature.

For more information, refer to Appendix A.

COMPONENT DESCRIPTION / VALUE

Table 64: Yield Curve Request Message (Continued)
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 120
EMAC320UMRDM.180



Chapter 10    Yield Curve Domain
10.2.2 Yield Curve Refresh Message

A Yield Curve Refresh Message is encoded using RefreshMsg and sent by OMM provider and OMM non-interactive provider 
applications. This message sends all currently available information about the item to the consumer.

FieldList in the payload should include all fields that might be present in subsequent updates, even if those fields are 
currently blank. When responding to a View request, this refresh should contain all fields requested by the specified view. If for 
any reason the provider wishes to send new fields, it must first send an unsolicited refresh with both the new and currently-
present fields.

Note: The provider should send the Name and ServiceName only in the first Refresh response message. However if 
MsgKeyInUpdates is set to true, then the Name and ServiceName must be provided for every Refresh response message.

COMPONENT DESCRIPTION / VALUE

MsgClass Required. MISSING VARIABLE: RSSL_MC_REFRESH = 

DomainType Required. MMT_YIELD_CURVE = 22

State Required. Includes the state of the stream and data.

Solicited Required. Indicates whether the refresh was solicited. Available values are:

• true: The message was solicited.

• false: The message was unsolicited.

Indications Conditional.

• DoNotCache: true, indicates that the application should not cache this refresh message.

• ClearCache: true, indicates that the application should clear the cache.

• Complete: true, indicates that the message is the final one in the refresh.

PartNum Optional. Specifies the part number of a multi-part refresh.

QoS Optional. Specifies the QoS at which the stream is provided.

SeqNum Optional. A user-specified, item-level sequence number which can be used by the application 
for sequencing messages within this stream.

ItemGroup Required. Associates the item with an Item Group (refer to Section 4.3.1.3).

PermissionData Optional. Specifies permission information associated with content on this stream.

extendedHeader Not used.

ServiceName Required. Specifies the name of the service that provides the item.

Note: The application should set either the ServiceName or ServiceId of the service, but not 
both.

ServiceId Required. Specifies the ID or name (e.g., “ELEKTRON_DD”) of the service that provides the 
item. ServiceId can be left blank if the provider uses a default ID or name.

Note: The application should set either the ServiceName or ServiceId of the service, but not 
both.

NameType Optional. Should match the NameType specified in the request. If this is not specified, NameType 
defaults to INSTRUMENT_NAME_RIC = 1.

Table 65: Yield Curve Refresh Message  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 121
EMAC320UMRDM.180



Chapter 10    Yield Curve Domain
10.2.3 Yield Curve Update Message

A Yield Curve Update Message is encoded using UpdateMsg and sent by OMM provider and OMM non-interactive provider 
applications. It conveys any changes to an item’s data. Updates may be received between the first Refresh and the 
RefreshComplete. It is the consuming application’s responsibility to determine if the update is applicable to the data that has 
previously been sent in a refresh.

Name Required. This should match the requested name.

Filter Not used.

Identifier Not used.

Attrib Not used.

Payload Required. This should consist of a FieldList containing all fields associated with the item. 
Some FieldEntrys are sent as more complex types such as Vector and Array. Encoding 
and decoding applications should be aware of this and ensure proper handling of these types.

Note: The provider should send the Name and ServiceName only in the first Refresh response message. However if 
MsgKeyInUpdates is set to true, then the Name and ServiceName must be provided for every Refresh response message.

COMPONENT DESCRIPTION / VALUE

MsgClass Required. MISSING VARIABLE: RSSL_MC_UPDATE = 

DomainType Required. MMT_YIELD_CURVE = 22

UpdateTypeNum Required. Indicates the general content of the update. Typically sent as one of the following:

• INSTRUMENT_UPDATE_UNSPECIFIED = 0 

• INSTRUMENT_UPDATE_QUOTE = 1 

Indications Conditional.

• DoNotCache: true, indicates that the application should not cache this update message.

• DoNotConflate: true, indicates that the application should not conflate the update message.

SeqNum Optional. A user-specified, item-level sequence number which the application can use to sequence 
messages in this stream.

PartNum Not used.

ConflatedCount Optional. If the provider sends a conflated update, ConflatedCount specifies how many updates 
are in the conflation.

The consumer indicates interest in this information by setting the ReqMsg.ConflatedInUpdates to 
true in the request.

Table 66: Yield Curve Update Message  

COMPONENT DESCRIPTION / VALUE

Table 65: Yield Curve Refresh Message (Continued)
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 122
EMAC320UMRDM.180



Chapter 10    Yield Curve Domain
10.2.4 Yield Curve Status Message

A Yield Curve status message is encoded using StatusMsg and sent by OMM interactive provider and non-interactive provider 
applications. This message conveys state change information associated with an item stream.

ConflatedTime Optional. If a provider is sending a conflated update, ConflatedTime specifies the time interval (in 
milliseconds) over which data is conflated.

The consumer indicates interest in this information by setting the ReqMsg.ConflatedInUpdates to 
true in the request.

PermissionData Optional. Permissioning information associated with only the contents of this update.

extendedHeader Not used.

ServiceName Conditional. ServiceName is required if MsgKeyInUpdates was set to true on the request. 
Specifies the name of the service that provides the data.

Note: The application should set either the ServiceName or ServiceId of the service, but not both.

ServiceId Conditional. ServiceId is required if MsgKeyInUpdates was set to true on the request. Specifies 
the ID or name (e.g., “ELEKTRON_DD”) of the service that provides the item. ServiceId can be 
left blank if the provider uses a default ID or name.

Note: The application should set either the ServiceName or ServiceId of the service, but not both.

NameType Conditional. NameType is required if MsgKeyInUpdates was set to true on the request. Should 
match the NameType specified on the request. If this is not specified, NameType defaults to 
INSTRUMENT_NAME_RIC = 1.

Name Conditional. Name is required if MsgKeyInUpdates was set to true on the request. Specifies the 
name of the item being provided.

Filter Not used.

Identifier Not used.

Attrib Not used.

Payload Required. This should consist of a FieldList containing all fields associated with the item. Some 
FieldEntrys are sent as more complex types such as Vector and Array. Encoding and decoding 
applications should be aware of this and ensure proper handling of these types.

Note: The provider should send the Name and ServiceName only in the first Refresh response message. However if 
MsgKeyInUpdates is set to true, then the Name and ServiceName must be provided for every Status response message.

COMPONENT DESCRIPTION / VALUE

MsgClass Required. MISSING VARIABLE: RSSL_MC_STATUS = 

DomainType Required. MMT_YIELD_CURVE = 22

Table 67: Yield Curve Status Message  

COMPONENT DESCRIPTION / VALUE

Table 66: Yield Curve Update Message (Continued)
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 123
EMAC320UMRDM.180



Chapter 10    Yield Curve Domain
10.2.5 Yield Curve Domain Post Message

If supported by the provider, consumer applications can post Yield Curve data. For more information on posting, refer to the 
Message API C++ Edition Developers Guide.

State Optional. Current state information associated with the data and stream.

Indications Optional.

ClearCache: true, indicates that the cache should be cleared.

QoS Optional. Specifies the QoS at which the stream is provided.

ItemGroup Optional. The provider can use this component to change the item’s ItemGroup.

PermissionData Optional. Specifies new permissioning information associated with all contents on the stream.

extendedHeader Not used.

ServiceName Conditional. ServiceName is required if MsgKeyInUpdates was set to true on the request. 
Specifies the name of the service that provides the data.

Note: The application should set either the ServiceName or ServiceId of the service, but not both.

ServiceId Conditional. ServiceId is required if MsgKeyInUpdates was set to true on the request. Specifies 
the ID or name (e.g., “ELEKTRON_DD”) of the service that provides the item. ServiceId can be 
left blank if the provider uses a default ID or name.

Note: The application should set either the ServiceName or ServiceId of the service, but not both.

NameType Conditional. NameType is required if MsgKeyInUpdates was set to true on the request). Should 
match the NameType specified on the request. If this is not specified, NameType defaults to 
INSTRUMENT_NAME_RIC = 1.

Name Conditional. Name is required if MsgKeyInUpdates was set to true on the request). Specifies the 
name of the item being provided.

Filter Not used.

Identifier Not used.

Attrib Not used.

Payload Not used.

COMPONENT DESCRIPTION / VALUE

Table 67: Yield Curve Status Message (Continued)
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 124
EMAC320UMRDM.180



Chapter 10    Yield Curve Domain
10.3 Data

10.3.1 Response Message Payload

The payload of a Yield Curve Refresh or Update is a FieldList. Some FieldEntry contents contain primitive type 
information to help describe the curve. Examples include the Curve Type (CRV_TYPE), the Algorithm used to calculate the 
curve (CRV_ALGTHM), and the Interpolation (INTER_MTHD) and Extrapolation (EXTRP_MTHD) methods. Because the 
fields in each Vector are the same, bandwidth can be further optimized by DataDefinitions.

Other FieldEntry’s contain more complex information. The more complex entries are broken down into:

• Input Entries which define the different input data used to calculate the yield curve. Inputs are represented using non-
sorted Vector types. Examples of curve inputs would be cash rates (CASH_RATES), future prices (FUTR_PRCS), 
and swap rates (SWAP_RATES).

• Output Entries which define the output of the yield curve calculation. Outputs are represented using non-sorted 
Vector types. An example of curve outputs would be the Yield Curve (YLD_CURVE) itself. 

• Extra Meta Data (EX_MET_DAT) which provides general data about the yield curve. This is represented using a 
ElementList type. Extra meta data allows users to provide additional curve descriptions without needing to define 
new fields. Some examples of meta data would be curve creation time or the curve’s owner.

Figure 20.  Yield Curve Payload Example
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 125
EMAC320UMRDM.180



Chapter 10    Yield Curve Domain
10.3.2 Summary Data

For Vector types, summaryData can be included to provide information specific to the Vector‘s contents. Any summaryData 
needs to be present only for the first refresh part that contains the Vector. Typical summaryData fields include tenors 
(TENORS).

10.3.3 Yield Curve Input and Output Entries

Each VectorEntry houses a FieldList that contains specific information about the respective input or output. The field list 
should be decoded by checking the FieldEntry data type.

• For more information on dictionary use, refer to Section 5.2.

• For more information about use of the Vector and FieldList container types, refer to the Message API C++ Edition 
Developers Guide.

The following table contains additional information about input and output entries (all of which are of the Vector container type 
with a container entry type of FieldList).

10.4 Special Semantics

None

NAME FIELD NAME TYPE DESCRIPTION

Cash Rates CASH_RATES Input Contains cash rate data used to calculate the yield curve output.  This 
typically includes information like settlement date (CASH_SDATE), 
maturity date (CASH_MDATE), and basis (CASH_BASIS).

Future Prices FUTR_PRCS Input Contains future pricing data used to calculate the yield curve output; 
typically including data such as settlement date (FUTR_SDATE), maturity 
date (FUTR_MDATE), and basis (FUTR_BASIS).

Swap Rates SWAP_RATES Input Contains swap rate data used to calculate the yield curve output; typically 
including data such as settlement date (SWAP_SDATE), maturity date 
(SWAP_MDATE), swap rate value (SWAP_RATE_VAL), and roll date 
(SWAP_RDATE).

Spread Rates SPRD_RATES Input Contains spread rate data used to calculate yield curve output; typically 
including data such as spread frequency (SPRD_FREQ), maturity date 
(SPRD_MDATE), spread rate (SPRD_RATE), and roll date 
(SPRD_RDATE).

Yield Curve YLD_CURVE Output Contains calculated Yield Curve data; typically including data such as 
zero rate (YCT_ZRATE), forward rate (YCT_FWRATE), and discount 
factor (YCT_DISFAC).

Table 68: Yield Curve Inputs and Outputs  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 126
EMAC320UMRDM.180



Chapter 10    Yield Curve Domain
10.5 Specific Usage: ATS

When an application consumes Yield Curve data, the dictionary used by the application must contain certain required FIDs. 
For further details, refer to the ATS documentation.
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 127
EMAC320UMRDM.180



Chapter 11    Symbol List Domain
Chapter 11 Symbol List Domain

11.1 Description

The Symbol List domain provides access to a set of symbol names, typically from an index, service, or cache. Content is 
encoded as a Map, with each symbol represented by a map entry and where the symbol name is the entry key. An entry’s 
payload is optional, but when present the payload is a FieldList that contains additional cross-reference information such as 
permission information, name type, or other venue-specific content.

11.2 Usage

11.2.1 Symbol List Request Message

A Symbol List request message is encoded and sent by OMM consumer applications.

The consumer can make a streaming request (set ReqMsg.InterestAfterRefresh to true) to receive updates, typically 
associated with item additions or removals from the list.

Note: GenericMsg(s) are not supported for MMT_SYMBOL_LIST Reuters Domain Model.

COMPONENT DESCRIPTION / VALUE

MsgClass Required. RSSL_MC_REQUEST = 

DomainType Required. MMT_SYMBOL_LIST = 10

Interactions Conditional.

• InitialImage: true, indicates that an initial image is required.

• InterestAfterRefresh: true, indicates that a streaming request is required.

• Pause: true, indicates that a pause is required.

Indications Optional.

ConflateInUpdates: true, indicates that conflated updates are required.

Batch and View requests are specified in the Payload.

QoS Not used.

worstQos Not used.

Priority Optional. Indicates class and count associated with stream priority.

extendedHeader Not used.

ServiceName Required. Specifies the name of the service from which the consumer wants to request the 
item.

Note: The consumer application should set either the ServiceName or ServiceId of the 
service, but not both.

Table 69: Symbol List Request Message  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 128
EMAC320UMRDM.180



Chapter 11    Symbol List Domain
ServiceId Required. Specifies the ID or name (e.g., “ELEKTRON_DD”) of the service that provides the 
requested item. ServiceId can be left blank if the provider uses a default ID or name.

Note: The consumer application should set either the ServiceName or ServiceId of the 
service, but not both.

NameType Optional. NameType should match name type specified in the request. When consuming from 
Thomson Reuters sources, NameType is typically set to INSTRUMENT_NAME_RIC = 1 (the 
“Reuters Instrument Code”). If absent, NameType defaults to INSTRUMENT_NAME_RIC = 1.

Name Required. Specifies the name of the requested item.

Note: Not used for Batch Item requests.

Filter Not used.

Identifier Not used.

Attrib Not used.

Payload Optional. When leveraging such features as View, Batch, or behaviors related to the Symbol 
List Request, the payload can contain information relevant to that feature. For more detailed 
information, refer to Appendix A.

COMPONENT DESCRIPTION / VALUE

Table 69: Symbol List Request Message (Continued)
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 129
EMAC320UMRDM.180



Chapter 11    Symbol List Domain
11.2.2 Symbol List Refresh Message

A Symbol List refresh Message is encoded using RefreshMsg and sent by OMM provider and OMM non-interactive provider 
applications. This message sends a list of item names to the consumer.

A Symbol List refresh can be sent in multiple parts. Update and status messages can be delivered between parts of a refresh 
message, regardless of streaming or non-streaming request.

Note: The provider should send the Name and ServiceName only in the first Refresh response message. However if 
MsgKeyInUpdates is set to true, then the Name and ServiceName must be provided for every Refresh response message.

COMPONENT DESCRIPTION / VALUE

MsgClass Required. MISSING VARIABLE: RSSL_MC_REFRESH = 

DomainType Required. MMT_SYMBOL_LIST = 10

State Required. Indicates the state of the stream and data.

Solicited Required. Indicates whether the refresh was solicited. Available values are:

• true: The message was solicited.

• false: The message was unsolicited.

Indications Conditional.

• DoNotCache: true, requests that the application not cache this refresh message.

• ClearCache: true, requests that the application clear the cache.

• Complete: true, indicates that this message completes the refresh.

PartNum Optional. Specifies the part number of a multi-part refresh.

QoS Optional. Specifies the quality of service at which the stream is provided.

SeqNum Optional. A user-specified, item-level sequence number which can be used by the application 
for sequencing messages within this stream.

ItemGroup Optional. Associates the item with an Item Group (refer to Section 4.3.1.3).

PermissionData Optional. Specifies the permission information associated with content on this stream.

extendedHeader Not used.

ServiceName Required. Specifies the name of the service from which the consumer wants to request the 
item.

Note: The consumer application should set either the ServiceName or ServiceId of the 
service, but not both.

ServiceId Required. Specifies the ID or name (e.g., “ELEKTRON_DD”) of the service that provides the 
item. ServiceId can be left blank if the provider uses a default ID or name.

Note: The consumer application should set either the ServiceName or ServiceId of the 
service, but not both.

NameType Optional. NameType should match the NameType specified in the request. If absent, it is 
assumed to be INSTRUMENT_NAME_RIC = 1.

Table 70: Symbol List Refresh Message  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 130
EMAC320UMRDM.180



Chapter 11    Symbol List Domain
Name Required. Name should match the requested name.

Filter Not used.

Identifier Not used.

Attrib Not used.

Payload Required. The payload contains a Map where each entry represents an item in the list. Each 
map entry contains a FieldList or ElementList with additional info about that item.

COMPONENT DESCRIPTION / VALUE

Table 70: Symbol List Refresh Message (Continued)
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 131
EMAC320UMRDM.180



Chapter 11    Symbol List Domain
11.2.3 Symbol List Update Message

A Symbol List Update Message is encoded using UpdateMsg and sent by OMM provider and OMM non-interactive provider 
applications. It adds or removes items from the list. Updates will not be received before images, and a true snapshot is 
supported.

Note: The provider should send the Name and ServiceName only in the first Refresh response message. However if 
MsgKeyInUpdates is set to true, then the Name and ServiceName must be provided for every Update response message.

COMPONENT DESCRIPTION / VALUE

MsgClass Required. MISSING VARIABLE: RSSL_MC_UPDATE = 

DomainType Required. MMT_SYMBOL_LIST = 10

Indications Conditional.

• DoNotCache: true, indicates to not cache this update message.

• DoNotConflate: true, indicates to not conflate the update message.

QoS Optional. Specifies the quality of service at which the stream is provided.

UpdateTypeNum Not used. 

SeqNum Optional. A user-specified, item-level sequence number which can be used by the application 
for sequencing messages within this stream.

ConflatedCount Optional. If a provider sends a conflated update, ConflatedCount specifies how many updates 
are in the conflation.

The consumer indicates interest in this information by setting the 
ReqMsg.ConflatedInUpdates is set to true in the request.

ConflatedTime Optional. If a provider sends a conflated update, ConflatedTime specifies the time interval (in 
milliseconds) over which data is conflated.

The consumer indicates interest in this information by setting the 
ReqMsg.ConflatedInUpdates is set to true in the request.

PermissionData Optional. Specifies the permission information associated with only the contents of this update.

extendedHeader Not used.

ServiceName Conditional. ServiceName is required if MsgKeyInUpdates was set to true. ServiceName 
specifies the name of the service that provides the data.

Note: The provider application should set either the ServiceName or ServiceId of the service, 
but not both.

ServiceId Conditional. ServiceId is required if MsgKeyInUpdates was set to true. Specifies the ID or 
name (e.g., “ELEKTRON_DD”) of the service that provides the item. ServiceId can be left 
blank if the provider uses a default ID or name.

Note: The provider application should set either the ServiceName or ServiceId of the service, 
but not both.

NameType Conditional. NameType is required if MsgKeyInUpdates was set to true. Set this to match the 
NameType in the item’s request message (typically INSTRUMENT_NAME_RIC = 1). If absent, 
it is assumed to be INSTRUMENT_NAME_RIC = 1.

Table 71: Symbol List Update Message  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 132
EMAC320UMRDM.180



Chapter 11    Symbol List Domain
Name Conditional. Name is required if MsgKeyInUpdates was set to true. Specifies the name of the 
item being provided.

Filter Not used.

Identifier Not used.

Attrib Not used.

Payload Required. The payload contains a Map, where each entry represents an item in the list. Each 
map entry contains a FieldList with additional information about that item.

COMPONENT DESCRIPTION / VALUE

Table 71: Symbol List Update Message (Continued)
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 133
EMAC320UMRDM.180



Chapter 11    Symbol List Domain
11.2.4 Symbol List Status Message

A Symbol List status message is encoded using StatusMsg and sent by OMM interactive provider and non-interactive provider 
applications. This message conveys state change information associated with an item stream.

Note: The provider should send the Name and ServiceName only in the first Refresh response message. However if 
MsgKeyInUpdates is set to true, then the Name and ServiceName must be provided for every Status response message.

COMPONENT DESCRIPTION / VALUE

MsgClass Required. MISSING VARIABLE: RSSL_MC_STATUS = 

DomainType Required. MMT_SYMBOL_LIST = 10

State Optional. Current state information associated with the data and stream.

Indications Conditional.

ClearCache: true, indicates to clear the cache.

QoS Optional. Specifies the quality of service at which the stream is provided.

ItemGroup Optional. The provider can use this to change the item’s ItemGroup.

PermissionData Optional. Specifies new permissioning information associated with the stream’s contents.

extendedHeader Not used.

ServiceName Conditional. ServiceName is required if MsgKeyInUpdates was set to true. ServiceName 
specifies the name of the service that provides the data.

Note: The provider application should set either the ServiceName or ServiceId of the service, 
but not both.

ServiceId Conditional. ServiceId is required if MsgKeyInUpdates was set to true. Specifies the ID or 
name (e.g., “ELEKTRON_DD”) of the service that provides the item. ServiceId can be left 
blank if the provider uses a default ID or name.

Note: The provider application should set either the ServiceName or ServiceId of the service, 
but not both.

NameType Conditional. NameType is required if MsgKeyInUpdates was set to true. NameType should 
match the name type specified on the request. If it is not specified, NameType defaults to 
INSTRUMENT_NAME_RIC = 1.

Name Conditional. Name is required if MsgKeyInUpdates was set to true. Specifies the name of the 
item being provided.

Filter Not used.

Identifier Not used.

Attrib Not used.

Payload Not used.

Table 72: Symbol List Status Message  
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 134
EMAC320UMRDM.180



Chapter 11    Symbol List Domain
11.3 Data: Response Message Payload

The Symbol List payload is a Map. Each MapEntry key is an AsciiString symbol. The entry’s payload can be empty or contain a 
FieldList which can contain additional information (i.e., permission data and cross-reference information). This information 
should not update frequently.

A FieldList typically includes the fields:

• PROV_SYMB (3422): Contains the original symbol as provided by the exchange

• PROD_PERM (1): Stores permission information

Figure 21.  SymbolList Response Message Payload

11.4 Special Semantics

None
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 135
EMAC320UMRDM.180



Chapter 11    Symbol List Domain
11.5 Specific Usage

The payload is a Map. No SummaryData is provided. Each Refresh message includes up to 150 MapEntrys. DataDefinitions 
are not used to reduce bandwidth. The Map.TotalCountHint is not provided. The Map.KeyFieldId is currently not set.

Each MapEntry’s key is a Buffer that can be used as a request’s Name to make a request for an instrument. Each MapEntry’s 
value is a FieldList that contains the following information:

• PROV_SYMB (3422): Original symbol provided by the exchange

• PROD_PERM (1): Permission information

The OPRA Venue’s SymbolList, 0#OPRA is a hierarchical SymbolList of SymbolLists. Nested SymbolLists start with Z#. For 
details, refer to the RDF Direct OPRA Venue Guide.
Elektron Message API 3.2 C++ Edition – RDM Usage Guide 136
EMAC320UMRDM.180



    
Appendix A ReqMsg Payload

A.1 View Definition

The client application can specify interest in a specific subset of fields or elements (known as a ‘View’). This is done by 
encoding an array of the desired fields or elements in the request message payload. The response Message will contain a list 
of the requested fields or elements and possibly some others depending on factors such as aggregation and the ability of the 
provider to supply the requested view. Unless otherwise specified, this is supported on any non-administrative RDM and any 
user defined DMM. For more information, refer to the Message API C++ Edition Developers Guide. When requesting a new 
view or changing a view, at a minimum, the request message payload contains an element list with the following entries (any 
default behavior is included in the element’s description):

A.2 ItemList

The client application can specify interest in multiple items by using a single batch request message. To do this, encode a list 
of item names in the request message payload. This is supported on any non-administrative RDM and any user defined DMM. 
For further details, refer to Message API C++ Edition Developers Guide.

For batch request messages, the payload contains, at a minimum, an element list which includes the following element entry:

ELEMENT NAME TYPE RANGE/EXAMPLES DESCRIPTION

:ViewType UInt 1 | 2 Conditional. Specifies the content type of the 
:ViewData array.

Required when specifying a view or when reissuing 
while wanting to keep the same view.

Not required when re-issuing to remove a view. In this 
case, do not send a payload or view.

Available values are:

• 1 = VT_FIELD_ID_LIST (this is the default)

• 2 = VT_ELEMENT_NAME_LIST

:ViewData Array of Int or 
Array of ASCII

An Array of desired entries whose 
content matches the type as specified 
by :ViewType.

e.g., a :ViewType of 
VT_FIELD_ID_LIST uses an array of 
field IDs.

Required. Field Ids will be encoded as an array of 2 
byte fixed length field identifiers.

Element names will be variable length Ascii string fields.

:ViewData does not use a default value.

Table 73: View Definition in Payload  

ELEMENT NAME TYPE RANGE/EXAMPLES DESCRIPTION

:ItemList Array of ASCII 1 to Array

max

Required. A list of item names in which the client 
registers interest.

:ItemList does not use a default value.

Table 74: ItemList in Payload  
Elektron Message API 3.2 C++ Edition – Developers Guide 137
EMAC320UMRDM.180



    
A.3 Symbol List Behaviors

The client application can specify interest in getting data along with names belonging to the symbol list while requesting a 
symbol list. By specifying interest in data along with names, a client application does not need to open individual items 
belonging to symbol list and the items will be opened and data will be provided. To do this, encode a request message payload 
with an element list that has an element entry which specifies symbol list behavior.

For Symbol List request messages that specify interest in data, refer to Section A.3.1.

For further details, refer to Message API C++ Edition Developers Guide.

Figure 22.  SymbolList Request Message Payload Specifying Symbol List Behavior

A.3.1 Element List Contents

To encode a Symbol List request message that specifies interest in data, include an element list with the following element 
entry:

ELEMENT NAME TYPE DEFAULT DESCRIPTION

:SymbolListBehaviors ElementList ElementList containing 
ElementEntry of DataStreams 
set to 0.

Indicates any expected data behavior of individual 
items that will be opened from the symbol list.

If this element is absent, individual streams will not 
be opened.

The contents of :SymbolListBehaviors are 
extensible.

Table 75: Request Message Payload for Symbol List Domain Specifying Symbol List Behaviors  

 

Elektron Message API 3.2 C++ Edition – Developers Guide 138
EMAC320UMRDM.180



    
A.3.2 Contents of :SymbolListBehaviors

The following is the contents of the :SymbolListBehaviors element entry.

ELEMENT NAME TYPE RANGE DESCRIPTION

:DataStreams UInt 0 - 2 Indicates whether the consumer wants the individual items of the symbol list to 
be opened as streaming or non-streaming or not opened at all. For more 
information refer to the Message API C++ Edition Developers Guide.

:DataStreams uses the following bit-masks:

• 0x0: The consumer is interested only in getting the names and no data on 
the individual items of the symbol list. This is the default behavior.

• 0x1: The consumer is interested in getting the individual items of the symbol 
list opened as streaming.

• 0x2: The consumer is interested in getting the individual items of the symbol 
list opened as snap-shots.

Table 76: :SymbolListBehaviors ElementEntry Contents  
Elektron Message API 3.2 C++ Edition – Developers Guide 139
EMAC320UMRDM.180



© 2015 - 2018 Thomson Reuters. All rights reserved.

Republication or redistribution of Thomson Reuters content, including by framing or 
similar means, is prohibited without the prior written consent of Thomson Reuters. 
'Thomson Reuters' and the Thomson Reuters logo are registered trademarks and 
trademarks of Thomson Reuters and its affiliated companies.

Any third party names or marks are the trademarks or registered trademarks of the 
relevant third party.

Document ID: EMAC320UMRDM.180
Date of issue: 27 April 2018


	Chapter 1 Introduction
	1.1 About this Manual
	1.2 Audience
	1.3 Open Message Model (OMM)
	1.4 Reuters Wire Format (RWF)
	1.5 References
	1.6 Documentation Feedback
	1.7 Conventions
	1.7.1 Typographic
	1.7.2 General Transport API Syntax
	1.7.3 Definitions and Standard Behaviors

	1.8 Acronyms and Abbreviations

	Chapter 2 Domain Model Overview
	2.1 What is a Domain Message Model?
	2.2 Reuters Domain Models (RDMs) Vs User-Defined Models
	2.2.1 Reuters Domain Models (RDMs)
	2.2.2 User-Defined Domain Model
	2.2.3 Domain Message Model Creation

	2.3 Message Concepts
	2.4 OMM Consumer / OMM Interactive Provider Initial Interaction
	2.5 Sending and Receiving Content
	2.6 General Elektron Message API Concepts
	2.6.1 Snapshot and Streaming Requests
	2.6.2 Reissue Requests and Pause/Resume
	2.6.3 Clearing the Cache on Refreshes
	2.6.4 Dynamic View
	2.6.5 Batch Request
	2.6.6 Posting


	Chapter 3 Login Domain
	3.1 Description
	3.2 Usage
	3.2.1 Login Request Message
	3.2.2 Login Request Elements
	3.2.3 Login Request Domain Representation
	3.2.4 Login Refresh Message
	3.2.5 Login Refresh Elements
	3.2.6 Login Refresh Domain Representation
	3.2.7 Login Status Message
	3.2.8 Login Status Elements
	3.2.9 Login Status Domain Representation
	3.2.10 Login Update Message
	3.2.11 Login Close Message
	3.2.12 Login Generic Message Use
	3.2.13 Login Post Message
	3.2.14 Login Ack Message

	3.3 Data
	3.3.1 Login Refresh Message Payload
	3.3.2 Login Generic Message Payload

	3.4 Special Semantics
	3.4.1 Login Direction
	3.4.2 Initial Login
	3.4.3 Multiple Logins
	3.4.4 Group and Service Status
	3.4.5 Single Open and Allow Suspect Data Behavior

	3.5 Specific Usage: RDF Direct Login
	3.6 Specific Usage: Enterprise Platform
	3.7 Specific Usage: Login Credentials Update Feature

	Chapter 4 Source Directory Domain
	4.1 Description
	4.2 Usage
	4.2.1 Source Directory Request Message
	4.2.2 Source Directory Refresh Message
	4.2.3 Source Directory Update Message
	4.2.4 Source Directory Status Message
	4.2.5 Source Directory Generic Message

	4.3 Data
	4.3.1 Source Directory Refresh and Update Payload
	4.3.1.1 Source Directory Info Filter Entry
	4.3.1.2 Source Directory State Filter Entry
	4.3.1.3 Source Directory Group Filter Entry
	4.3.1.4 Source Directory Load Filter Entry
	4.3.1.5 Source Directory Data Filter Entry
	4.3.1.6 Source Directory Link Filter Entry

	4.3.2 Source Directory ConsumerStatus Generic Message Payload

	4.4 Special Semantics
	4.4.1 Multiple Streams
	4.4.2 Service IDs
	4.4.3 ServiceState and AcceptingRequests
	4.4.4 Service and Group Status Values
	4.4.4.1 Service Status
	4.4.4.2 Group Status

	4.4.5 Removing a Service
	4.4.6 Automatic Request from EMA Consumer
	4.4.7 Client Requests Non-Existing Service Directory


	Chapter 5 Dictionary Domain
	5.1 Description
	5.2 Decoding Field List Contents with Field and Enumerated Types Dictionaries
	5.3 Usage
	5.3.1 Dictionary Request Message
	5.3.2 Dictionary Refresh Message
	5.3.3 Dictionary Status Message

	5.4 Data
	5.4.1 Filter
	5.4.2 Refresh Message Summary Data
	5.4.3 Response Message Payload
	5.4.4 DictionaryId

	5.5 Field Dictionary
	5.5.1 Field Dictionary Payload
	5.5.2 Field Dictionary File Format
	5.5.2.1 Field Dictionary Tag Attributes
	5.5.2.2 Field Dictionary Columns
	5.5.2.3 RWF TYPE Keywords
	5.5.2.4 FIELD TYPE Keywords
	5.5.2.5 Custom FIDs

	5.5.3 Specific Usage: RDF Direct and FieldDefinition Dictionary

	5.6 Enumerated Types Dictionary
	5.6.1 Enumerated Types Dictionary Payload
	5.6.2 Enumerated Types Dictionary File Format
	5.6.2.1 Enumerated Types Dictionary File Example
	5.6.2.2 Tagged Attributes
	5.6.2.3 Reference Fields Section
	5.6.2.4 Values Table Section

	5.6.3 Specific Usage: RDF Direct and EnumTable Dictionary

	5.7 Special Semantics
	5.7.1 DictionariesProvided and DictionariesUsed
	5.7.2 Version Information
	5.7.2.1 Version Information Usage
	5.7.2.2 Handling Dictionary Version Changes


	5.8 Other Dictionary Types
	5.9 Specific Usage: Enterprise Platform

	Chapter 6 Market Price Domain
	6.1 Description
	6.2 Usage
	6.2.1 Market Price Request Message
	6.2.2 Market Price Refresh Message
	6.2.3 Market Price Update Message
	6.2.4 Market Price Status Message
	6.2.5 Market Price Post Message

	6.3 Data: Response Message Payload
	6.4 Special Semantics
	6.4.1 Snapshots
	6.4.2 Ripple Fields

	6.5 Specific Usage: RDF Direct MarketPrice
	6.6 Specific Usage: Legacy Records

	Chapter 7 Market By Order Domain
	7.1 Description
	7.2 Usage
	7.2.1 Market By Order Request Message
	7.2.2 Market By Order Refresh Message
	7.2.3 Market By Order Update Message
	7.2.4 Market By Order Status Message
	7.2.5 Market By Order Post Message

	7.3 Data
	7.3.1 Response Message Payload
	7.3.2 Summary Data
	7.3.3 MapEntry Contents

	7.4 Special Semantics
	7.5 Specific Usage: RDF Direct and Response Message Payload
	7.6 Specific Usage: Enterprise Platform

	Chapter 8 Market By Price Domain
	8.1 Description
	8.2 Usage
	8.2.1 Market By Price Request Message
	8.2.2 Market By Price Refresh Message
	8.2.3 Market By Price Update Message
	8.2.4 Market By Price Status Message
	8.2.5 Market By Price Post Message

	8.3 Data
	8.3.1 Response Message Payload
	8.3.2 Summary Data
	8.3.3 MapEntry.Key Contents

	8.4 Special Semantics
	8.5 Specific Usage: RDF Direct and the Response Message Payload
	8.6 Specific Usage: Enterprise Platform

	Chapter 9 Market Maker Domain
	9.1 Description
	9.2 Usage
	9.2.1 Market Maker Request Message
	9.2.2 Market Maker Refresh Message
	9.2.3 Market Maker Update Message
	9.2.4 Market Maker Status Message
	9.2.5 Market Maker Post Message

	9.3 Data
	9.3.1 Response Message Payload
	9.3.2 Summary Data
	9.3.3 MapEntry Contents

	9.4 Special Semantics
	9.5 Specific Usage: RDF Direct and the Response Message Payload
	9.6 Specific Usage: Enterprise Platform

	Chapter 10 Yield Curve Domain
	10.1 Description
	10.2 Usage
	10.2.1 Yield Curve Request Message
	10.2.2 Yield Curve Refresh Message
	10.2.3 Yield Curve Update Message
	10.2.4 Yield Curve Status Message
	10.2.5 Yield Curve Domain Post Message

	10.3 Data
	10.3.1 Response Message Payload
	10.3.2 Summary Data
	10.3.3 Yield Curve Input and Output Entries

	10.4 Special Semantics
	10.5 Specific Usage: ATS

	Chapter 11 Symbol List Domain
	11.1 Description
	11.2 Usage
	11.2.1 Symbol List Request Message
	11.2.2 Symbol List Refresh Message
	11.2.3 Symbol List Update Message
	11.2.4 Symbol List Status Message

	11.3 Data: Response Message Payload
	11.4 Special Semantics
	11.5 Specific Usage
	Appendix A ReqMsg Payload
	A.1 View Definition
	A.2 ItemList
	A.3 Symbol List Behaviors
	A.3.1 Element List Contents
	A.3.2 Contents of :SymbolListBehaviors




